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Abstract

Deep learning architectures underlie the most sophisticated and effective artificial intelligence
applications today. While artificial neural networks were implemented as early as 1958 by
Rosenblatt and known to possess the universal approximation property in the arbitrary width
case since 1989 (due to Cybenko & others), mathematical explanations of their overperformance
are still works in progress.

We define approximation schemes and approximation spaces, and present some fundamental
results. Based on recent work by Gribonval et al., we relate approximation spaces of neural
networks to the classical Besov spaces via embeddings in both directions, demonstrating the
expressivity of deep neural networks.

Keywords: approximation spaces, neural networks, deep learning, Besov spaces, functional analysis,
approximation theory

1 Introduction

In the span of a few years starting in 2011, the field of artificial intelligence experienced a remarkable
revival, fuelled by unprecedented access to large amounts of data (colloquially, “Big Data”) and
deep learning. While artificial neural networks — the structures that deep learning techniques
are based on — have been studied since at least 1943 by McCulloch and Pitts [6] and 1958 by
Rosenblatt [9], they waxed and waned in popularity. Several breakthroughs, most prominently
the success of a deep convolutional network in ImageNet’s 2012 Challenge [5], have ushered in
a new wave of artificial intelligence research focusing on deep learning. These have resulted in
recent achievements, such as the text-to-image generative models DALL·E and Imagen, and the
transformer-based language models GPT.

Deep learning, being a subset of the wider class of machine learning techniques, seems amenable
to mathematical analysis. Indeed, some results have been established, such as the universal
approximation property by Cybenko [1], Hornik et al. [4], and others. However, traditional
statistical learning theory predicts that the high complexity of deep learning models should lead
to poor generalisation performance; while optimisation theory predicts that solving very high-
dimensional nonconvex optimisation problems, i.e., deep learning, should be intractable in general.
This stands in contradiction to the observed performance of deep learning in practice. In general,
many aspects of deep learning have yet to be satisfactorily captured by mathematical explanations;
but a mathematical theory of deep learning is emerging.

Following recent work by [3], we recall the framework of approximation schemes and approximation
spaces from functional analysis, including relevant fundamental results. We then use this formalism
to provide embeddings in both directions of: 1. approximation spaces of functions representable by
neural networks of a given number of weights and layers; and 2. the classical Besov spaces. This
establishes the expressive capabilities of neural networks based on their complexity, i.e., number of
weights and layers.
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2 Theory of Approximation Spaces

In the following section, we recall the concept of approximation spaces as elaborated by [8].

2.1 Definitions

Definition 2.1. An approximation scheme (X,Σ) is a quasi-Banach space X with a sequence Σ of
subsets Σ1 ⊂ Σ2 ⊂ · · · ⊂ X such that

1. λΣn ⊂ Σn; and

2. Σm +Σn ⊂ Σm+n

for all nonnegative integers m,n. Fix Σ0 = {0}.

Let the error of best approximation of f from a subset Γ be defined by EX(f,Γ) = inf
g∈Γ

∥f − g∥X .

Proposition 2.2. Let (X,Σ) be an approximation scheme. Then for f, g ∈ X:

1. ∥f∥X = EX(f,Σ0) ≥ EX(f,Σ1) ≥ · · · ≥ 0;

2. EX(λf,Σn) = |λ|EX(f,Σn); and

3. EX(f + g,Σm+n) ≤ cX(EX(f,Σm) + EX(g,Σn)).

Definition 2.3. For an approximation scheme (X,Σ), the approximation space Xα
q consists of all

f ∈ X such that the sequence
(
nα−1/qEX(f,Σn−1)

)
is in ℓq, where n is a positive integer. Define

∥f∥Xα
q
=
∥∥∥(nα−1/qEX(f,Σn−1)

)∥∥∥
ℓq

for f ∈ Xα
q .

Proposition 2.4. Xα
q is a quasi-Banach space. Additionally, if α > β, then Xα

q ↪→ Xβ
q ; and if

q ≤ s, then Xα
q ↪→ Xβ

s for any α, β.

Proposition 2.5. Let f ∈ X. f is in Xα
q if and only if

(
2kαEX(f,Σ2k−1)

)
∈ ℓq. In addition,

∥f∥expXα
q
= ∥
(
2kαEX(f,Σ2k−1)

)
∥ℓq defines an equivalent quasi-norm on Xα

q .

Proof. We prove the first statement. Note that 1
2k

+ 1
2k+1

+ · · ·+ 1
2k+1−1

≥ ln 2. Hence, if f ∈ Xα
q ,

∞∑
k=0

[
2(k+1)αEX(f,Σ2k+1−1)

]q
≤ 2αq

ln 2

∞∑
k=0

2kαqEX(f,Σ2k+1−1)
q
2k+1−1∑
n=2k

1

n

≤ c

∞∑
k=0

EX(f,Σ2k+1−1)
q
2k+1−1∑
n=2k

nαq−1

≤ c

∞∑
k=0

2k+1−1∑
n=2k

nαq−1EX(f,Σn−1)
q

≤ c

∞∑
n=1

[
nαq−1EX(f,Σn−1)

]q
.

The converse is straightforward.

2.2 Theorems

We now turn to some fundamental theorems on approximation spaces.
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Theorem 2.6 (Representation Theorem). Let (X,Σ) be an approximation scheme. Then f ∈ X is
in Xα

q if and only if there exist fk ∈ Σ2k such that f =
∑∞

k=0 fk (the so-called ”representation”)

and
(
2kα∥fk∥X

)
∈ ℓq. Moreover, define

∥f∥repXα
q
= inf

∥∥(2kα∥fk∥X)∥∥ℓq ,
where the infimum is taken over all possible representations. ∥·∥repXα

q
is an equivalent quasi-norm on

Xα
q .

Proof. Let f ∈ Xα
q . For each k, choose f∗

k ∈ Σ2k such that ∥f − f∗
k∥X ≤ 2EX(f,Σ2k), and set

f0 = f1 = 0 and fk = f∗
k−1 − f∗

k−2. We have fk ∈ Σ2k−1+2k−2 ⊂ Σ2k , and

f = lim
k→∞

f∗
k =

∞∑
k=0

fk.

Observe that

∥fk∥X ≤ cX(∥f − f∗
k−1∥X + ∥f − f∗

k−2∥X)

≤ 4cXEX(f,Σ2k−2−1).

Applying Proposition 2.5, we find that
(
2kα∥fk∥X

)
∈ ℓq and

∥f∥repXα
q
≤ 22α+2cX∥f∥expXα

q
.

Call a quasi-norm ∥·∥ a p-norm if ∥f + g∥ ≤ ∥f∥p + ∥g∥p for all f, g. Without loss of generality,
assume that ∥·∥X is a p-norm, where 0 < p < q. If f has a representation f =

∑∞
k=0 fk satisfying

fk ∈ Σ2k and
(
2kα∥fk∥X

)
∈ ℓq, then since

∑n−1
k=0 fk ∈ Σ2n−1, we have that

EX(f,Σ2n−1)
p ≤

∥∥∥∥∥f −
n−1∑
k=0

fk

∥∥∥∥∥
p

X

≤
∞∑

k=n

∥fk∥pX .

When 0 < q < ∞, fix r = q/p and β such that 0 < β < αp. Apply Hölder’s inequality to obtain

∞∑
n=0

(2nαEX(f,Σ2n−1))
q ≤

∞∑
n=0

2nαq

( ∞∑
k=n

2−kβ2kβ∥fk∥pX

)r

≤
∞∑

n=0

2nαq

( ∞∑
k=n

2−kβr′

)r/r′ ( ∞∑
k=n

2kβr∥fk∥qX

)

≤ c1

∞∑
n=0

2n(αq−βr)
∞∑

k=n

2kβr∥fk∥qX

≤ c1

∞∑
k=1

2kβr∥fk∥qX
k∑

n=0

2n(αq−βr)

≤ c2

∞∑
k=1

(2kα∥fk∥X)q < ∞.

Thus, ∥f∥expXα
q

≤ c
∥∥(2kα∥fk∥X)∥∥ℓq , and by Proposition 2.5, f ∈ Xα

q and ∥f∥expXα
q

≤ c∥f∥repXα
q
. A

similar argument follows for q = ∞.

Corollary 2.7. If 0 < q < ∞, then the linear subset Σ∞ =
⋃∞

n=1 Σn is dense in Xα
q .

Call an approximation scheme (X,Σ) linear if there exists a uniformly bounded sequence Pn of
linear projections mapping X onto Σn.
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Theorem 2.8 (Linear Representation Theorem). Let (X,Σ) be a linear approximation scheme.
Then f ∈ X is in Xα

q if and only if
(
2kα∥fk∥X

)
∈ ℓq, where fk = (P2k+1−1−P2k−1)f . In particular,

we have the linear representation

f =

∞∑
k=0

fk,

and
∥f∥linXα

q
≤
∥∥(2kα∥fk∥X)∥∥ℓq

defines an equivalent quasi-norm on Xα
q .

Theorem 2.9 (Reiteration Theorem). Let (X,Σ) be an approximation scheme. Then (Xα
q )

β
s =

Xα+β
s . (In other words, we can iteratively “construct” approximation spaces.)

Proof. If f ∈ (Xα
q )

β
s , then

(
2kβEXα

q
(f,Σ2k−1)

)
∈ ℓs. By Lemma 1 of [8, Theorem 3.2], which states

that there exists a constant c > 0 such that nαEX(f,Σ2n−2) ≤ cEXα
q
(f,Σn−1) for n = 1, 2, . . ., we

obtain
(
2k(α+β)EX(f,Σ2k−1)

)
∈ ℓs. Thus, f ∈ Xα+β

s .

Conversely: if f ∈ Xα+β
s , then we have a representation f =

∑∞
k=0 fk with fk ∈ Σ2k and(

2k(α+β)∥fk∥X
)
∈ ℓs. By Lemma 2 of [8, Theorem 3.2], which states that there exists a constant

c > 0 such that ∥f∥Xα
q
≤ cnα∥f∥X for all f ∈ Σn and n = 1, 2, . . ., we have that

(
2kβ∥fk∥Xα

q

)
∈ ℓs.

Therefore, f ∈ (Xα
q )

β
s .

Let L(X,Y ) be the (quasi-Banach) space of bounded linear operators from quasi-Banach spaces X
to Y with the operator quasi-norm.

Theorem 2.10 (Transformation Theorem). Let (X,A) and (Y,B) be approximation schemes, and
T ∈ L(X,Y ). Suppose there exist positive constants c, β such that TAm ⊂ Bn when n ≥ cmβ.
Then TXαβ

q ⊂ Y α
q for all α, q.

Proof. Consider β ≥ 1. Let Nm = {n ∈ N : c(m− 1)β +1 ≤ n < cmβ +1} for m = 1, 2, . . . — these
partition the positive integers. It may be seen that:

1. |Nm| ≤ c1m
β−1;

2. nα−1/q ≤ c2m
β(α−1/q) for n ∈ Nm; and

3. EY (Tf,Bn−1) ≤ ∥T∥LEX(f,Am−1) for f ∈ X and n ∈ Nm.

Hence, if 0 < q < ∞, we have

∥Tf∥Y α
q

=

( ∞∑
m=1

∑
n∈Nm

[nα−1/qEY (Tf,Bn−1)]
q

)1/q

≤

( ∞∑
m=1

c1m
β−1[c2m

β(α−1/q)∥T∥LEX(f,Am−1)]
q

)1/q

≤ c∥f∥Xα
q

The case 0 < β < 1 follows similarly, as do the cases where q = ∞.

We omit the proofs of the following theorems, which can be found in [8].

Theorem 2.11 (Embedding Theorem). Let X and Y be quasi-Banach spaces continuously embedded
into some linear topological (Hausdorff) space, and let (X,Σ) and (Y,Σ) be approimation schemes
with the same sequence of subsets Σ. Suppose there exist positive constants c, β such that ∥f∥Y ≤
cnβ∥f∥X for all f ∈ Σn and n = 1, 2, . . .. Then Xα+β

q ⊂ Y α
q . In particular, if Y can be equipped

with a p-norm with 0 < p ≤ 1, then Xβ
p ⊂ Y .
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Theorem 2.12 (Composition Theorem). Let (X,A), (Y,B), and (Z,C) be approximation schemes.
Let M : X × Y → Z be a bounded bilinear map. Suppose M(An, Y ) and M(X,Bn) are both
contained in Cn. Then M(Xα

p , Y
β
q ) ⊂ Zα+β

r , where 1/r = 1/p+ 1/q.

3 Approximation Spaces of Deep Neural Networks

We can now treat deep neural networks with the formalism of approximation spaces, following
[3]. We only consider “strict” neural networks below, omitting discussion of generalised neural
networks encompassing networks with skip connections like Residual Networks. (It turns out that
the approximation spaces of strict and generalised networks coincide for activation functions that
can represent the identity [3, Theorem 3.8].)

3.1 Definitions

Definition 3.1. A neural network Φ with activation function or nonlinearity ϱ : R → R is
an ordered tuple ((T1, α1), . . . , (TL, αL)), where for each l = 1, 2, . . . , L, Nl is a positive integer,
Tl : RNl−1 → RNl is an affine map, αl : RNl → RNl applies ϱ coordinate-wise for 1 ≤ l < L, i.e.,
(x1, . . . , xNl

)
αl7−→ (ϱ(x1), . . . , ϱ(xNl

)), and αL = idRNL . Such a neural network is said to have a depth

of L(Φ) = L ”layers”, each of width Nl. The number of weights is given by W (Φ) =
∑L

l=1∥Tl∥ℓ0 ,
where ∥T∥ℓ0 counts the nonzero entries in the matrix A if the affine map Tx = Ax+ b (we say A is

the ”matrix part” of T ). The number of hidden neurons is given by N(Φ) =
∑L−1

l=1 Nl.

Definition 3.2. The realisation R(Φ) of a neural network ((T1, α1), . . . , (TL, αL)) is the function

R(Φ) = αL ◦ TL ◦ · · · ◦ α1 ◦ T1.

Definition 3.3. Let L be a positive integer (possibly ∞), W and N be nonnegative integers (also

possibly∞), and Ω ⊂ Rd nonempty. NN ϱ,d,k
W,L,N is the set of all networks Φ with activation function ϱ,

input dimension N0 = d, output dimension NL = k, number of weights W (Φ) ≤ W , depth L(Φ) ≤ L,

and number of hidden neurons N(Φ) ≤ N . NN
ϱ,d,k
W,L,N is the set of all functions representable by

networks in NN ϱ,d,k
W,L,N ; i.e., NNϱ,d,kW,L,N = {R(Φ) : Φ ∈ NN ϱ,d,k

W,L,N}. Finally, NNϱ,d,kW,L,N (Ω) is the set of
all such functions restricted to Ω.

Note. Our set of strict neural networks NN ϱ,d,k
W,L,N corresponds to the set SNN ϱ,d,k

W,L,N in [3], which

uses NN ϱ,d,k
W,L,N to refer to generalised networks instead. (Similarly for NNϱ,d,kW,L,N and SNN

ϱ,d,k
W,L,N .)

Definition 3.4. A depth-growth function is a nondecreasing function F : N → N ∪ {∞}. F is
dominated by F ′ (written F ⪯ F ′) if, for large enough n, there exists c a positive integer such that
F(n) ≤ F ′(cn). F is equivalent to F ′ (written F ∼ F ′) if F ⪯ F ′ ⪯ F .

Definition 3.5. Let ϱ be an activation function, F a depth-growth function, Ω a subset of Rd, and
X a quasi-Banach space consisting of functions f : Ω → Rk. Define Wn(X, ϱ,F) = NN

ϱ,d,k
n,F(n),∞(Ω)∩X,

setting W0(X, ϱ,F) = {0}. (The depth-growth function controls how the depth of our networks
grows with the number of weights n.)

Proposition 3.6. Let Σn = Wn(X, ϱ,F). Then (X,Σ) is in fact an approximation scheme. Denote
the associated approximation spaces by Wα

q (X, ϱ,F) = Xα
q .

Proof. Σ0 = W0(X, ϱ,F) = {0} by definition. Since NNϱ,d,kW,L,∞(Ω) ⊂ NN
ϱ,d,k
W+1,L′,∞(Ω) whenever L ≤ L′,

and depth-growth functions are by definition nondecreasing, we immediately have

Wn(X, ϱ,F) = NN
ϱ,d,k
n,F(n),∞(Ω) ⊂ NN

ϱ,d,k
n+1,F(n+1),∞(Ω) = Wn+1(X, ϱ,F).

Let f ∈ NN
ϱ,d,k
W,L,∞(Ω), and suppose f = R(Φ) = αL ◦ TL ◦ · · · ◦ α1 ◦ T1. Simply take λf = R(Φ′) =

αL◦(λTL)◦· · ·◦α1◦T1 (remembering that αL = idRk). This shows that λWn(X, ϱ,F) ⊂ Wn(X, ϱ,F).
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Finally, without loss of generality, suppose m ≤ n. Let f ∈ NN
ϱ,d,k
m,L,∞(Ω) and g ∈ NN

ϱ,d,k
n,L,∞(Ω), and

suppose that f = R(Φ1) = αL◦TL◦· · ·◦α1◦T1 and g = R(Φ2) = βL◦SL◦· · ·◦β1◦S1. One may check
that f+g = R(Φ) = θL◦RL◦· · ·◦θ1◦R1, where Rl : RMl−1+Nl−1 → RMl+Nl ; (x, y) 7→ (Tlx, Sly) and
RL : RML−1+NL−1 → Rk; (x, y) 7→ TLx+SLy); while θl : RMl+Nl → RMl+Nl ; (x, y) 7→ (αlx, βly) and
θL = idRk ; for 1 ≤ l < L. The number of weights of the new network Φ is W (Φ) = W (Φ1) +W (Φ2)
— if Rlx = Alx + bl, Al has the matrix part of Tl in the top-left block, the matrix part of Sl in
the bottom-right block, and zeroes everywhere else; AL has the matrix part of TL on the left and
the matrix part of SL on the right. Thus, taking L = max{F(m),F(n)} ≤ F(m+ n) shows that
Wm(X, ϱ,F) + Wn(X, ϱ,F) ⊂ Wm+n(X, ϱ,F).

Note. [3] places an additional constraint on approximation schemes; namely that Σ∞ is dense in X.
It is seen that the networks we wish to address satisfy the necessary measure-theoretic requirements
to meet this constraint.

3.2 ReLU-networks and related networks

Write ϱ1 : R → R+ for the activation function x
ϱ17−→ max{0, x}; ϱ1 is known as the rectified linear

unit or ReLU. Write ϱr for the rth power of ϱ1; i.e., x
ϱr7−→ ϱ1(x)

r. We will be concerning ourselves
primarily with ϱr-networks, as the ReLU is one of the most commonly used nonlinearities for
current deep learning practice.

Definition 3.7. Let I ⊂ R be an interval. The set of piecewise polynomials of degree at most r with
at most n pieces (or n− 1 breakpoints) is denoted PPolyrn(I); write PPoly

r(I) =
⋃

n∈N PPoly
r
n(I).

The set of free-knot splines of degree at most r with at most n pieces (or n − 1 breakpoints) is
defined as Splinern(I) = PPolyrn(I) ∩ Cr−1(I); again, write Spliner(I) =

⋃
n∈N Spline

r
n(I).

Call a domain Ω ⊂ Rd admissible if it is Borel-measurable with nonzero measure.

Theorem 3.8. Consider the space X = Lp(Ω;Rk), where 0 < p ≤ ∞ and Ω ⊂ Rd is an admissible
domain. Let F be a depth-growth function.

1. If ϱ ∈ PPolyr(R), then

Wα
q (X, ϱ,F) ↪→

{
Wα

q (X, ϱr,max{F + 1, 2}) if d = 1

Wα
q (X, ϱr,max{F + 1, 3}) if d ≥ 2

.

Furthermore, if Ω is bounded or r = 1 or F + 1 ⪯ F , then Wα
q (X, ϱ,F) ↪→ Wα

q (X, ϱr,F).

2. If ϱ ∈ Spliner(R) and Ω is bounded, then F + 1 ⪯ F , then Wα
q (X, ϱ,F) = Wα

q (X, ϱr,F)
with equivalent norms.

3. For any positive integer s, we have Wα
q (X, ϱrs ,F) ↪→ Wα

q (X, ϱr, s(F − 1)).

Corollary 3.9. If 2F ⪯ F , then for all r ≥ 2 we have

Wα
q (X, ϱ1,F) ↪→ Wα

q (X, ϱ2,F) = Wα
q (X, ϱr,F).

Theorem 3.10. Let X = Lp(Ω;Rk), where 0 < p, q ≤ ∞ and Ω ⊂ Rd be measurable with interior
nonempty. Let ϱ ∈ PPolyrn(R) be continuous and F be a depth-growth function with supF ≥ 2.
Then Wα

q (X, ϱ,F) ⊊ X. (Wα
q (X, ϱ,F) is a proper, i.e., nontrivial subset of X.)

3.3 Limitations of bounded depth ReLU-networks

Denote the class of k-times continuously differentiable functions on Ω with compact support by
Ck

c (Ω).

Theorem 3.11. Let Ω ⊂ Rd be open and admissible, 0 < p, q ≤ ∞, X = Lp(Ω), and L be a positive
integer. If C3

c (Ω) ∪Wα
q (X, ϱ1, L) ̸= {0}, then ⌊L/2⌋ ≥ α/2.

Taking the contrapositive, we see that ReLU-networks with bounded depth fail to contain any
nonzero function f ∈ C3

c (Ω).
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Proof (sketch). Since Wα
q (X, ϱ1, L) ⊂ Wα

∞(X, ϱ1, L), we can consider q = ∞. Let f ∈ C3
c (Ω) be

nonzero. Choose Ω0 = Br(x0) ⊂ Ω so f |Ω0
is not affine and, by [7, Proposition C.5], there is a

constant c1 > 0 such that ∥f − g∥Lp(Ω0) ≥ c1P
−2 for each P -piecewise slice affine function g. There

is a constant K so that NNϱ1,1,1
W,L,∞ ⊂ PPoly1

KW ⌊L/2⌋(R). Thus, each g ∈ NN
ϱ1,d,1
W,L,∞ is P -piecewise slice

affine with P = KW ⌊L/2⌋.

Now let f ∈ Wα
∞(X, ϱ1, L). There is a constant c2 > 0 such that for each positive integer n there is

gn ∈ NN
ϱ1,d,1
n,L,∞ satisfying ∥f − g∥Lp(Ω0) ≤ ∥f − g∥X ≤ c2n

−α.

Combining, we see that K−2c1n
−2⌊L/2⌋ ≤ ∥f − g∥Lp(Ω0) ≤ c2n

−α, so α ≤ 2⌊L/2⌋.

3.4 Relations to Besov spaces

We now study embeddings of Besov spaces into Wα
q (X, ϱr, L) — which we shall call direct estimates ;

and embeddings of Wα
q (X, ϱr, L) into Besov spaces — we will call these inverse estimates.

The difference operator is defined as ∆hf(x) = f(x+ h)− f(x), and

∆h(f, x,Ω) =

{
∆hf(x) if x, x+ h, . . . , x+ rh ∈ Ω

0 otherwise
.

The modulus of smoothness of order r of f ∈ Lp(Ω) is

ωr(f, t)p = sup
|h|≤t

∥∆h(f, ·,Ω)r∥Lp(Ω).

Definition 3.12. [2, Section 2] Let Ω ⊂ Rd be open, α > 0, 0 < p ≤ ∞, and 1 ≤ q < ∞. The
Besov space Bs

p,q(Ω) consists of all functions f ∈ Lp(Ω) such that

|f |Bs
p,q(Ω) =

(∫ ∞

0

∣∣t−sωr(f, t,Ω)p
∣∣q dt

t

)1/q

< ∞.

Define the norm on Bs
p,q(Ω) as such:

∥f∥Bs
p,q(Ω) = ∥f∥Lp(Ω) + |f |Bs

p,q(Ω).

We omit the (spline-/wavelet-theoretic) proofs of the following estimates, which are laid out in [3].

Theorem 3.13. Let Ω be a bounded Lipschitz domain with nonzero measure, and X = Lp(Ω). Let
F be a depth-growth function.

1. If d = 1 and L = supF(n) ≥ 2, then for all 0 < p, q ≤ ∞ and 0 < s < r +min{1, 1/p}, we
have

Bs
p,q ↪→ W s

q (X, ϱr,F).

2. If d > 1 and L = supF(n) ≥ 3, then for all 0 < p, q ≤ ∞ and 0 < s < 1
d (r0 +min{1, 1/p}),

we have
Bsd

p,q ↪→ W s
q (X, ϱr,F),

letting r0 =

{
r if r ≥ 2 and L ≥ 2 + 2⌈log2 d⌉
0 otherwise

.

The following theorem shows that Wα
q (X, ϱr,F) can fail to embed into Besov spaces if the approxi-

mation rate parameter α is too small.

Theorem 3.14. Let Ω = (0, 1)d and X = Lp(Ω). Let F be a depth-growth function with L =
supF(n) ≥ 2. For all 0 < σ, τ, q ≤ ∞ and α, s > 0, if Wα

q (X, ϱr,F) ↪→ Bs
σ,τ (Ω), then α ≥

⌊L/2⌋ ·min{s, 2}.

7



Theorem 3.15. Let Ω = (0, 1) and X = Lp(Ω) (the above hypotheses for d = 1). Let F be a
depth-growth function with L = supF(n) < ∞. Set s = α/⌊L/2⌋. When q = 1/(s+ 1/p), we have

Wα
q (X, ϱr,F) ↪→ Bs

q,q(Ω).

In fact, Wα
q (X, ϱr,F) embeds into a real interpolation space of Lp(Ω) and the above Besov space

for all s > 0 and 0 < α < s⌊L/2⌋.

4 Conclusion

The language of approximation spaces can be a fruitful framework with which we may analyse the
expressivity of a large class of neural networks.

It is proven in [3, Lemma 2.18] that the class of neural networks is closed under composition. In future
work, we hope to further study approximation spaces of functions satisfying structural conditions
like Wm(X, ϱ,F) ◦ Wn(X, ϱ,F) ⊂ Wm+n(X, ϱ,F). By exploring the expanded approximation capacity
that such compositional properties provide, we hope to compare neural networks to wavelets, splines,
and other approximation techniques.
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