How to Keep your Customers An Introduction to Naïve Bayes Classifiers

Lairoongroj Jinnawat (Jake)

BA2203 Presentation

24 October 2022

- Naïve Bayes Classifiers
- 2 Example: Predicting Lapse

Recap: Bayes' Theorem

Theorem (Bayes' Theorem)

Given events A and B where $P(B) \neq 0$, we have

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}.$$

Very powerful!

Model from machine learning (Hastie et al., 2009).

- Outcomes or classes: C_1, C_2, \ldots
- Observed predictor variables or features: $\mathbf{x} = (x_1, x_2, \dots, x_n)$
- Assume all features are mutually independent.

Model from machine learning (Hastie et al., 2009).

- Outcomes or classes: C_1, C_2, \dots
- Observed predictor variables or features: $\mathbf{x} = (x_1, x_2, \dots, x_n)$
- Assume all features are mutually independent.

Theorem

$$P(C_k|x_1,\ldots,x_n)\propto P(C_k)\prod_{i=1}^n P(x_i|C_k).$$

Proof.

Consider the event of observing C_k and features x_1, x_2, \ldots Extracting the x_i 's, we have

$$P(C_{k}, x_{1}, ..., x_{n}) = P(x_{1} | C_{k}, x_{2}, ..., x_{n}) P(C_{k}, x_{2}, ..., x_{n})$$

$$= P(x_{1} | C_{k}, x_{2}, ..., x_{n}) P(x_{2} | C_{k}, x_{3}, ..., x_{n}) P(C_{k}, x_{3}, ..., x_{n})$$

$$= ...$$

$$= P(x_{1} | C_{k}, x_{2}, ..., x_{n}) P(x_{2} | C_{k}, x_{3}, ..., x_{n}) \cdots P(C_{k})$$

$$= P(C_{k}) \prod_{i=1}^{n} P(x_{i} | C_{k}).$$

$$\therefore P(C_{k} | x_{1}, ..., x_{n}) = \frac{P(C_{k}, x_{1}, ..., x_{n})}{P(x_{1}, ..., x_{n})} \propto P(C_{k}) \prod_{i=1}^{n} P(x_{i} | C_{k}). \square$$

- Decision-making: Classify observation as C_k which maximises $P(C_k) \prod_{i=1}^n P(x_i | C_k)$.
- Probabilities are obtained from past observations, i.e., training data.
- Note: Features can be discrete (multinomial, Bernoulli) or continuous (normal, nonparametric) (John and Langley, 1995).

- 1 Naïve Bayes Classifiers
- 2 Example: Predicting Lapse

A Basic Life Insurance Product

You are an actuarial analyst at a life insurer, looking to create a simple model for whether an individual policy will *lapse in a given year* (0 or 1) and identify ways to retain customers.

Looking through the literature (Fang and Kung, 2021; Eling and Kochanski, 2013), you decide on the following parameters/assumptions:

A Basic Life Insurance Product

You are an actuarial analyst at a life insurer, looking to create a simple model for whether an individual policy will *lapse in a given year* (0 or 1) and identify ways to retain customers.

Looking through the literature (Fang and Kung, 2021; Eling and Kochanski, 2013), you decide on the following parameters/assumptions:

- Classes: policy lapsed (=1) or policy did not lapse (=0)
- Features:
 - age band (young, middle-aged, old);
 - gender (male, female);
 - smoker status (smoker, non-smoker); and
 - macroeconomic conditions (good, bad).
- Assume all features are mutually independent.

One Class: Age Band

Suppose we wish to predict whether a middle-aged policyholder will lapse.

Age Band Lapsed?	Young	Middle-Aged	Old	Total
Yes	14	45	49	108
No	379	315	198	892
Total	392	364	244	1000

How to Keep your Customers: An Introduction to Naïve Bayes Classifiers

BA2203 Presentation

One Class: Age Band

Suppose we wish to predict whether a middle-aged policyholder will lapse.

Lapsed?	Age Band	Young	Middle-Aged	Old	Total
	Yes	14	45	49	108
	No	379	315	198	892
	Total	392	364	244	1000

$$P(\mathsf{middle-aged} \mid 1) = \frac{45}{108}$$

$$\approx 0.435.$$
(1)

$$P(\text{middle-aged} \mid 0) = \frac{315}{892} \tag{2}$$

 ≈ 0.353 .

1 ト 4 個 ト 4 差 ト 4 差 ト . 差 . かへぐ

All Classes

Now suppose that the policyholder is a middle-aged male smoker, and economic conditions that year are bad. Let the vector of features x_i be \mathbf{x} .

Conditional Prob.	Features	Middle-Aged	Male	Smoker	Bad Cond ⁿ s
	$P(x_i \mid 1)$	0.4167	0.6204	0.7315	0.7130
	$P(x_i \mid 0)$	0.3531	0.4664	0.3094	0.2365

$$P(1 \mid \mathbf{x}) \propto P(1) \prod_{x_i \in \mathbf{x}} P(x_i \mid 1)$$

$$= \frac{108}{1000} (0.4167)(0.6204)(0.7315)(0.7130)$$

$$\approx 1.6\%.$$
(3)

All Classes

Similarly,

$$P(0 \mid \mathbf{x}) \propto P(0) \prod_{x_i \in \mathbf{x}} P(x_i \mid 0)$$

$$= \frac{892}{1000} (0.3531)(0.4664)(0.3094)(0.2365)$$

$$\approx 1.1\%.$$
(4)

Since $P(1 \mid \mathbf{x}) > P(0 \mid \mathbf{x})$, classify the policyholder as likely to lapse.

Real-World Applications

- Possible *interventions* to recommend: Improve health status, e.g., offer discounts for quitting smoking.
- In reality, many more features may be used (with appropriate penalisation). Large sample size, metrics like *sensitivity* and *specificity* for comparing models.

Real-World Applications

- Possible interventions to recommend: Improve health status, e.g., offer discounts for quitting smoking.
- In reality, many more features may be used (with appropriate penalisation). Large sample size, metrics like *sensitivity* and *specificity* for comparing models.
- Other uses:
 - document classification (spam filtering) (Sahami et al., 1998),
 - sentiment analysis (Pang et al., 2002),
 - medical predictions (Khanna and Sharma, 2018), etc.

Real-World Applications

- Possible *interventions* to recommend: Improve health status, e.g., offer discounts for quitting smoking.
- In reality, many more features may be used (with appropriate penalisation). Large sample size, metrics like *sensitivity* and *specificity* for comparing models.
- Other uses:
 - document classification (spam filtering) (Sahami et al., 1998),
 - sentiment analysis (Pang et al., 2002),
 - medical predictions (Khanna and Sharma, 2018), etc.
- Naïve Bayes classifiers are simple, fast, and easy to implement (especially with Python packages like scikit-learn).

Thank you!

Contact me!

Slides

- Eling, M., & Kochanski, M. (2013). Research on lapse in life insurance: What has been done and what needs to be done? *The Journal of Risk Finance*, *14*(4), 392–413. https://doi.org/10.1108/JRF-12-2012-0088
- Fang, H., & Kung, E. (2021). Why do life insurance policyholders lapse? the roles of income, health, and bequest motive shocks. *Journal of Risk and Insurance*, 88(4), 937–970. https://doi.org/10.1111/jori.12332
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). Kernel smoothing methods. In T. Hastie, R. Tibshirani, & J. Friedman (Eds.), The elements of statistical learning: Data mining, inference, and prediction (pp. 191–218). Springer. https://doi.org/10.1007/978-0-387-84858-7_6
- John, G. H., & Langley, P. (1995). Estimating continuous distributions in bayesian classifiers. *Proceedings of the Eleventh conference on Uncertainty in artificial intelligence*, 338–345.

- Khanna, D., & Sharma, A. (2018). Kernel-based naive bayes classifier for medical predictions. In V. Bhateja, C. A. Coello Coello, S. C. Satapathy, & P. K. Pattnaik (Eds.), *Intelligent engineering informatics* (pp. 91–101). Springer. https://doi.org/10.1007/978-981-10-7566-7_10
- Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? sentiment classification using machine learning techniques. *Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002)*, 79–86. https://doi.org/10.3115/1118693.1118704
- Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. (1998). A bayesian approach to filtering junk e-mail.