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Recap: Bayes’ Theorem

Theorem (Bayes' Theorem)

Given events A and B where P(B) # 0, we have

P(B|A)P(A)

® Very powerful!
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Naive Bayes Classifiers: Definition

Model from machine learning (Hastie et al., 2009).
® Qutcomes or classes: C1, Gy, ...
® Observed predictor variables or features: x = (x1, x2, ..., Xn)

® Assume all features are mutually independent.
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Naive Bayes Classifiers: Definition

Model from machine learning (Hastie et al., 2009).
® Qutcomes or classes: C1, Gy, ...
® Observed predictor variables or features: x = (x1, x2, ..., Xn)

® Assume all features are mutually independent.

P(Cilx1,- -, xn) o< P(C) T T P(xil Co)-
i=1
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Naive Bayes Classifiers: Definition

Consider the event of observing Cyx and features xi, xo, . ... Extracting the x;'s, we
have

P(Ck,Xl, e ,Xn) = P(X1|Ck,X2,. .. ,X,,)P(Ck,Xg, e ,Xn)
= P(X1|Ck,X2,. .. ,X,,)P(X2|Ck,X3,. .. ,Xn)P(Ck,X3, . ,X,-,)

= P(x1|Ci; xor—5%m) P(x2| Ci, X3, ——7) - - - P(Ci)
= P(Ce) [ ] Pl Ci).-
i=1

P(Ciyx1,- -y Xn) n
P(x1,...,xn) “P(Ck)l;[P(x,le). L]
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Naive Bayes Classifiers: Definition

n
® Decision-making: Classify observation as C, which maximises P(Cy) H P(xi|Ck).
i=1
® Probabilities are obtained from past observations, i.e., training data.
® Note: Features can be discrete (multinomial, Bernoulli) or continuous (normal,
nonparametric) (John and Langley, 1995).
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Example: Predicting Lapse
0@00000

A Basic Life Insurance Product

You are an actuarial analyst at a life insurer, looking to create a simple model for

whether an individual policy will lapse in a given year (0 or 1) and identify ways to
retain customers.

Looking through the literature (Fang and Kung, 2021; Eling and Kochanski, 2013),
you decide on the following parameters/assumptions:
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A Basic Life Insurance Product

You are an actuarial analyst at a life insurer, looking to create a simple model for

whether an individual policy will lapse in a given year (0 or 1) and identify ways to
retain customers.

Looking through the literature (Fang and Kung, 2021; Eling and Kochanski, 2013),
you decide on the following parameters/assumptions:
¢ Classes: policy lapsed (= 1) or policy did not lapse (= 0)
® Features:
® age band (young, middle-aged, old);
gender (male, female);

smoker status (smoker, non-smoker); and
® macroeconomic conditions (good, bad).

® Assume all features are mutually independent.
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One Class: Age Band

Example: Predicting Lapse
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Suppose we wish to predict whether a middle-aged policyholder will lapse.

Lapsed? Age Band Young | Middle-Aged | Old | Total
Yes 14 45 49 | 108

No | 379 315 198 | 892

Total | 392 364 244 | 1000
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Example: Predicting Lapse
00e0000

One Class: Age Band

Suppose we wish to predict whether a middle-aged policyholder will lapse.

Lapsed? Age Band Young | Middle-Aged | Old | Total
Yes 14 45 49 | 108
No | 379 315 198 | 892
Total | 392 364 244 | 1000
45
iddle-aged | 1) = —
P(middle-aged | 1) 158 "
~ 0.435.
315
P i I = pr— —_—
(middle-aged | 0) = o
~ 0.353.
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Example: Predicting Lapse
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All Classes

Now suppose that the policyholder is a middle-aged male smoker, and economic
conditions that year are bad. Let the vector of features x; be x.

Features Middle-Aged | Male | Smoker | Bad Cond”s

P(x; | 1) | 04167 | 0.6204 | 0.7315 | 0.7130
P(xi | 0) | 03531 | 0.4664 | 0.3094 | 0.2365

Conditional Prob.

P(1 | x) o P(1) [T P(xi | 1)

XiEX
108
= 500 (0-4167)(0.6204)(0.7315)(0.7130) (3)

~ 1.6%.
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Example: Predicting Lapse
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All Classes

Similarly,

P(0 | x) o P(0) [ P(x | 0)

X; EX
892
= To0g (0-3531)(0.4664)(0.3094)(0.2365) *)
~1.1%.

Since P(1 | x) > P(0 | x), classify the policyholder as likely to lapse.
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Example: Predicting Lapse
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Real-World Applications

® Possible interventions to recommend: Improve health status, e.g., offer discounts
for quitting smoking.

® In reality, many more features may be used (with appropriate penalisation). Large
sample size, metrics like sensitivity and specificity for comparing models.
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Real-World Applications

® Possible interventions to recommend: Improve health status, e.g., offer discounts
for quitting smoking.
® In reality, many more features may be used (with appropriate penalisation). Large
sample size, metrics like sensitivity and specificity for comparing models.
® QOther uses:
® document classification (spam filtering) (Sahami et al., 1998),

® sentiment analysis (Pang et al., 2002),
® medical predictions (Khanna and Sharma, 2018), etc.
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Example: Predicting Lapse
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Real-World Applications

® Possible interventions to recommend: Improve health status, e.g., offer discounts
for quitting smoking.
® In reality, many more features may be used (with appropriate penalisation). Large
sample size, metrics like sensitivity and specificity for comparing models.
® QOther uses:
® document classification (spam filtering) (Sahami et al., 1998),
® sentiment analysis (Pang et al., 2002),
® medical predictions (Khanna and Sharma, 2018), etc.
* Naive Bayes classifiers are simple, fast, and easy to implement (especially with
Python packages like scikit-learn).
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Example: Predicting Lapse
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Thank you!

Contact me!
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