MH4920 — GALOIS THEORY & NUMBER FIELDS

Biweekly Quizzes

. Supervisor
Jake Lai Bernhard Schmidt
Study plan
WEEK | ToprIcS READINGS
1 | Algebraic foundations LR 1
2 | Field extensions; algebraic extensions; splitting fields & algebraic closure DF 13.1, 2,4
3 | Separable extensions, normal extensions; cyclotomic extensions DF 13.5, 6
4 | Fundamental theorem of Galois theory; finite fields DF 14.2, 3
5 Cyclotonyc & abelian extensions; Galois groups of polynomials; insolvability DF 14.5, 6, 7
of the quintic

6 | Historical motivation (Fermat’s last theorem); number fields, number rings M1,2
7 | Number fields, number rings M 2
8 | Prime decomposition in number rings M3
9 | Galois theory applied to prime decomposition M 4

10 | Ideal class group, unit group M5

11 | Dirichlet’s unit theorem; distribution of ideals in a number ring M6

12 | Dedekind zeta function, class number formula M7

13 | Statements of class field theory, reciprocity M8

LR = Lidl & Niederreiter, Introduction to Finite Fields and their Applications
DF = Dummit & Foote, Abstract Algebra
M = Marcus, Number Fields

Week 2 (24 Aug 2023)

Problem 1. Construct an algebraic extension F of Q such that there is no subfield K of F where [K : Q] = 2.

Solution: Take any root a of 3 — 2, which can be seen to be irreducible by either noting that 23 —2 is cubic and
has no roots in Q (since /2 ¢ Q) or applying Eisenstein’s criterion. Letting F' = Q(«), we see that [F : Q] = 3;
if [K : Q] = 2, then 2 | 3, a contradiction. (See also DF 13.2 Exercise 14.)

Problem 2. Let F be a field with char(F) = 7. Find all roots of 2 — 1 in F.

Solution: Note that 13 —1 =0, so  — 1 divides 22 — 1 to produce 22 — x + 1. Similarly, 32 —3+1=7=01in
F, so x — 3 divides 22 — 2 + 1 (say, via polynomial long division) to produce z + 2. Thus, the roots are 1,3, —2;
there are no more roots since deg(z3 — 1) = 3.

Problem 3. Let f(z) = 2® + 2% + 22 + 2. Find a zero divisor of Fs[z]/(f).

Solution: Note that 12 + 12 +2(1) +2 = 6 = 0 in F3, so § — 1 is a zero divisor of F3[z]/(f) (following the
notation of DF 13.1).

Alternatively, observe that
P42+ 2=z +1)+2(x+1)
= (2" +2)(z +1)
— @)+ 1)
(@ -1+ 1)

Grade obtained: 100%.



Week 4 (11 Sep 2023)

Problem 1. Prove that there are only finitely many roots of unity in any finite extension K of Q.

Solution: Assume that K/Q contains infinitely many roots of unity, so that in particular it contains ¢,, = e?™%/™,
where n is unbounded. Thus,

(K Q] > [Q(¢n) - Q = ¢(n).
Since ¢(n) is unbounded, K is an infinite extension of Q.

Problem 2. What is G = Gal(Q(¢,)/Q)?

Solution: Let K = Q((,). Since K is the splitting field of 2™ — 1 (or ®,(x)) over Q which is separable, K/Q is
Galois (and thus we can speak of the Galois group of K/Q). For each 1 < a < n relatively prime to n, there
exists an automorphism (say, o,) determined by the action ¢, — (2. Since |G| = [K : Q] = ¢(n), G is exactly
the group of all such o,.

Consider the map f : (Z/nZ)* — G ; a — o,. We have that

UanCn = UaCZ = Cgb = Uaanv
so f is a group homomorphism. In particular, it is injective: suppose o, = o, then (2 = (% so a = b (mod n).
By |G| = ¢(n) = |(Z/nZ)*|, f is bijective and hence an isomorphism. Therefore, G = (Z/nZ)*.
Problem 3. Compute [Q((7 + (2 + ¢7) : Q.
Solution: Let L = Q(¢7), K = Q(¢7 + ¢ + ¢#) C L. As shown previously, G = Gal(L/Q) = {1,042, - ,06}. It
suffices to determine the subgroup H < G fixing the subfield K, i.e., fixing o := (7 + (2 + (7.

loa =« oi=ola =«

o2 = 09(7 + 02(F + 02(7
=G HGa=a

o300 = 03(7 + 03(F + 03(7
=G+G G Fa

0500 = 03040 # @

O = 030200 # @

Writing 7 := 03, we get that H = {1, 7,72} fixes K. Thus, [K : Q] = |G : H| =6/3 = 2.
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Grade obtained: 80%.

Week 7 (28 Sep 2023)

It is given that ®q5(x) = 2% — 22 + 1.
Problem 1. Find the splitting fields of ®15 over o and F3, and determine their Galois groups.

Solution: From Problem 2 below, the splitting fields of @15 over Fy and F3 are Falx]/(z? + 2+ 1) = Fy[(3] =2 Fy
and Fs[z]/(2? 4+ 1) = F4[i] = Fy respectively. Since [F2 : F,] = 2, the Galois groups of both splitting fields are
the unique group of order 2. In particular, their nontrivial (Frobenius) automorphisms are (3 — (3 = —(3 and
i — i3 = —i respectively.

Problem 2. Show that ®;5 is reducible in Fy[z] and F3|x].

Solution: In Fa[z], @12 = 2*—2%+1 = 2*+22+1. Since (a+b)? = a?+b%, we have that 24 +2%2+1 = (22 +2+1)2.
In Fsfz], @10 = 2% — 22 + 1 = 2% + 222 + 1 = (22 + 1)2. Since ®12(z) = 1 for all values of x over both finite
fields, ®15 does not split further into linear factors.

Problem 3. Prove that ®y5 | (7 ~! — 1) for every prime p > 5. (Hint: @15 | (22 — 1).)



Solution: Note that p = £1 or +5 (mod 12). Thus, p?—~1=12—1 or 5> ~1 =0 (mod 12). Hence, 12 | (p*> —1),
implying 12 — 1 divides 2"~ — 1. The statement follows immediately from the hint, obtained by noting that
D, | (2™ — 1) with n = 12.

Problem 4. Thus, prove that ®15 is reducible in F,[z] for all primes p.

Solution: We have proven the cases p = 2,3. Let p > 5 be a prime. Since | splits completely over
Fp2, so does ®12. Because [F,2 : F))] = 2, this implies that the minimal polynomial in Fp[z] for any element of

P2
F,2 is at most degree 2. As such, ®; having all roots in F,2 implies that it must have the (deg < 2) minimal

polynomial of one of those roots as a factor, hence is reducible (in particular, into the product of two quadratics
uniquely).

Grade obtained: 75%.

Week 9 (23 Oct 2023)

Problem 1. Find a prime p such that (2) splits into exactly six prime ideals in Z[(,].

Solution: Since Q((,) is a normal extension of Q, all the ramification indices e; and inertial degrees f; of Q; | (2)
are equal; so ref = [Q((p) : Q] = p — 1. Since clearly 2 does not divide p, it is unramified in Q(¢,). Hence,
we have r = 6 | (p — 1), and need only check primes p = 7,13,19,31,---. We will use the fact that f is the
multiplicative order of p mod n.

p f (-D/f=r

73 6/3 =2

13 12 12/12=1

19 18 18/18 =1

31 5 30/5=06
Therefore, (2) splits into exactly six primes in Z[(s1].
Problem 2. Let n € Z*, ¢ € Z be prime, and ¢ f n. Let Q be a prime ideal above ¢ in Z[(,] and
o € Gal(Q(¢,)/Q) with o(¢,) = ¢2. Show that 0(Q) = Q. (Hint: f(z?) = f(x)? (mod ¢) for f a polynomial.)

Solution: Let o = 2?1_01 a;¢t € Q, where a; € Z. Note that the hint can be extended to f(x9) = f(x)? (mod Q).
Then

n—1
ola) =0 (Z ai@i)
o =0 |
= Z a;io(Gy,)
o
= ai
i=0
n—1 q
= (Z a@i) = a? (mod Q).

=0

But since a € @, o(a) = a? =0 (mod Q), so o(a) € Q as well. Hence, we have that o(Q) C Q, and because
o(Q) is a prime ideal and thus a maximal ideal, ¢(Q) = Q.

Problem 3. Show that (p) = (1 —(,)P~! in Z[(p], where p is a prime, and that (1 — ¢,) is a prime ideal in
Z[Cp). (Hint: (1 — ¢p) = (1 —¢p) for ged(a,p) = 1.)

Solution: We have the following formula (in ordinary algebraic integers): (1 —(p)(1—¢2)---(1—¢871) = p.
Thus, (p) = (1 —¢)A—¢2)---(1—¢271) = (1 — ()P~ ! (as ideals) as per the hint. Since ref =p — 1, (p) can
have no more than p — 1 prime ideal factors — which are clearly the p — 1 copies of (1 — ().

Grade obtained: 85%.



Week 13 (16 Nov 2023)

Problem 1. Which cyclotomic fields have only finitely many units? What are these units?

Solution: Dirichlet’s unit theorem states the following: The unit group of a number field K is of the form
U=WxV,where W = u(Og) is the multiplicative group of roots of unity in K, and V is a free abelian group
of rank r + s — 1, where r and 2s are the number of real and nonreal embeddings of K into C respectively. For
n > 3, cyclotomic fields have no real embeddings, so a cyclotomic field K := Q((,) has finitely many units iff
W is trivial, i.e., r+s—1=0o0r s = 1. [K : Q] = ¢(n) = 2s, thus we seek all solutions to p(n) = 2: these are
n =3 and 4.

These units are then precisely the roots of unity u,, C Q(¢,): in the case of Q((3), {1,(3,(3}; and in the case
of Q(§4)3 {la 7:7 715 77’}
Problem 2. What are the units in Q(1/—23)?
Solution: It is known that imaginary quadratic fields have only finitely many units; thus, we seek the roots
of unity pu(Ok) in K := Q(v/—23), i.e., elements o € K such that N(«) = £1. Since —23 = 1 (mod 4), the
algebraic integers of K are of the form 2tby=23 5723, where a,b € Z, a = b (mod 2). Thus,
N ([(@FOVEE3N _ (atbyT23Y (a— by
2 B 2 2
a® + 23b?
4

= 41,

or a? 4+ 23b% = +4. Clearly, any integer b > 0 will cause the LHS to exceed 4, so b = 0. This leaves us with

a = 2 as the only solutions, so the only roots of unity are % V=23 _ % = +1.

Alternatively, let £p = 1 (mod 4) be an odd prime, K = Q(y/£p), and L = Q((,). It is known that Ok is a
subring of O, = Z[(p], which induces an injective homomorphism (say, ¢) from the unit group of K to that of
L. In fact, since group homomorphisms preserve torsion, any root of unity in K is mapped to a root of unity
in L, which all satisfy (P = 1. Let £ be a root of unity in K, then ¢(e?) = ¢(e)P = 1, = ¢(£1lk), so
e? —1=0in K (up to a sign).

Let « be algebraic of degree n. If o € K, then n < [K : Q()][Q(«) : Q] = [K : Q] = 2. Thus, we need only
consider elements of degree < 2 satisfying e? = £1. However, 2" — 1 = Hd‘n ®,,(x), so any element satisfying
eP — 1 = 0 must have degree dividing p, i.e., 1 or p. Since the only roots of unity of degree 1 over Q are +1,
these are precisely the roots of unity in Q(1/%£p). In particular, the units in Q(1/—23) are exactly the roots of
unity, hence +1.

Problem 3. What are the algebraic integers of Q(v/—23)7

Solution: For r,s € Q and d = 1 (mod 4) squarefree, r + sv/d is an algebraic integer iff z2 — 2rz + 12 — ds?

has integer coefficients. Thus, r = & where a € Z. If a =0 (mod 2), r* —ds®> € Z iff s € Z. If a = 1 (mod 2),

r2—ds?eZiff se %Z — Z. This can be summarised as

Aﬂ@(ﬁ):{W:

a,b € Z,a =b (mod 2)} )
Problem 4. Prove that (2, (1 4+ +/—23)/2) is a prime ideal above 2 in Q(1/—23).
Solution: Let I be (2, (1 ++/—23)/2). Since r < ref = 2, 2 lies under at most two primes in Ok.

Let J = (2,(1 — v/—=23)/2). We see that I.J = (2). Moreover, 2 does not divide =23 V2_23: there are no integers

a, b such that 1‘“2_23 — g(att g —23) — 4+ by/—23. Hence, I # (2); by a similar argument, J # (2). Notice that
we have exhibited exactly two ideals dividing (2). These must be distinct since 2 is unramified. Hence, I and
J are prime ideals.

Problem 5. Show that (2, (1 4 +/—23)/2) is nonprincipal in Q(+/—23).
Solution: Note that ||I]| divides ged(][(2)]], (1 + v/=23)/2)||) = ged(4,6) = 2. Since ||| # 1, ||| = 2.

Suppose I = («) for some algebraic integer a = % V23 where a,b € Z, a = b (mod 2). Then since
()] = IN(a)| = “QZAM = 2, we must have a? + 23b? = 8, which has no solutions in integers. Hence, I cannot

be principal.

Grade obtained: 85%.



