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Study plan

Week Topics Readings
1 Algebraic foundations LR 1
2 Field extensions; algebraic extensions; splitting fields & algebraic closure DF 13.1, 2, 4
3 Separable extensions, normal extensions; cyclotomic extensions DF 13.5, 6
4 Fundamental theorem of Galois theory; finite fields DF 14.2, 3

5
Cyclotomic & abelian extensions; Galois groups of polynomials; insolvability
of the quintic

DF 14.5, 6, 7

6 Historical motivation (Fermat’s last theorem); number fields, number rings M 1, 2
7 Number fields, number rings M 2
8 Prime decomposition in number rings M 3
9 Galois theory applied to prime decomposition M 4
10 Ideal class group, unit group M 5
11 Dirichlet’s unit theorem; distribution of ideals in a number ring M 6
12 Dedekind zeta function, class number formula M 7
13 Statements of class field theory, reciprocity M 8

LR = Lidl & Niederreiter, Introduction to Finite Fields and their Applications
DF = Dummit & Foote, Abstract Algebra
M = Marcus, Number Fields

Week 2 (24 Aug 2023)

Problem 1. Construct an algebraic extension F of Q such that there is no subfield K of F where [K : Q] = 2.

Solution: Take any root α of x3−2, which can be seen to be irreducible by either noting that x3−2 is cubic and
has no roots in Q (since 3

√
2 /∈ Q) or applying Eisenstein’s criterion. Letting F = Q(α), we see that [F : Q] = 3;

if [K : Q] = 2, then 2 | 3, a contradiction. (See also DF 13.2 Exercise 14.)

Problem 2. Let F be a field with char(F ) = 7. Find all roots of x3 − 1 in F .

Solution: Note that 13 − 1 = 0, so x− 1 divides x3 − 1 to produce x2 − x+ 1. Similarly, 32 − 3 + 1 = 7 = 0 in
F , so x− 3 divides x2− x+1 (say, via polynomial long division) to produce x+2. Thus, the roots are 1, 3,−2;
there are no more roots since deg(x3 − 1) = 3.

Problem 3. Let f(x) = x3 + x2 + 2x+ 2. Find a zero divisor of F3[x]/(f).

Solution: Note that 13 + 12 + 2(1) + 2 = 6 = 0 in F3, so θ − 1 is a zero divisor of F3[x]/(f) (following the
notation of DF 13.1).

Alternatively, observe that

x3 + x2 + 2x+ 2 = x2(x+ 1) + 2(x+ 1)

= (x2 + 2)(x+ 1)

= (x2 − 1)(x+ 1)

= (x− 1)(x+ 1)2.

Grade obtained: 100%.
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Week 4 (11 Sep 2023)

Problem 1. Prove that there are only finitely many roots of unity in any finite extension K of Q.

Solution: Assume that K/Q contains infinitely many roots of unity, so that in particular it contains ζn = e2πi/n,
where n is unbounded. Thus,

[K : Q] ≥ [Q(ζn) : Q] = φ(n).

Since φ(n) is unbounded, K is an infinite extension of Q.

Problem 2. What is G = Gal(Q(ζn)/Q)?

Solution: Let K = Q(ζn). Since K is the splitting field of xn − 1 (or Φn(x)) over Q which is separable, K/Q is
Galois (and thus we can speak of the Galois group of K/Q). For each 1 ≤ a < n relatively prime to n, there
exists an automorphism (say, σa) determined by the action ζn 7→ ζan. Since |G| = [K : Q] = φ(n), G is exactly
the group of all such σa.

Consider the map f : (Z/nZ)× → G ; a 7→ σa. We have that

σaσbζn = σaζ
b
n = ζabn = σabζn,

so f is a group homomorphism. In particular, it is injective: suppose σa = σb, then ζan = ζbn so a ≡ b (mod n).
By |G| = φ(n) = |(Z/nZ)×|, f is bijective and hence an isomorphism. Therefore, G ∼= (Z/nZ)×.

Problem 3. Compute [Q(ζ7 + ζ27 + ζ47 ) : Q].

Solution: Let L = Q(ζ7), K = Q(ζ7 + ζ27 + ζ47 ) ⊆ L. As shown previously, G = Gal(L/Q) = {1, σ2, · · · , σ6}. It
suffices to determine the subgroup H ≤ G fixing the subfield K, i.e., fixing α := ζ7 + ζ27 + ζ47 .

1α = α σ4α = σ2
2α = α

σ2α = σ2ζ7 + σ2ζ
2
7 + σ2ζ

4
7

= ζ27 + ζ47 + ζ7 = α
σ5α = σ3σ4α ̸= α

σ3α = σ3ζ7 + σ3ζ
2
7 + σ3ζ

4
7

= ζ37 + ζ67 + ζ57 ̸= α
σ6α = σ3σ2α ̸= α

Writing τ := σ2, we get that H = {1, τ, τ2} fixes K. Thus, [K : Q] = |G : H| = 6/3 = 2.

L

K

Q

3

2

1

{1, τ, τ2}

G

3

2

←→

Grade obtained: 80%.

Week 7 (28 Sep 2023)

It is given that Φ12(x) = x4 − x2 + 1.

Problem 1. Find the splitting fields of Φ12 over F2 and F3, and determine their Galois groups.

Solution: From Problem 2 below, the splitting fields of Φ12 over F2 and F3 are F2[x]/(x
2 +x+1) ∼= F2[ζ3] ∼= F4

and F3[x]/(x
2 + 1) ∼= F3[i] ∼= F9 respectively. Since [Fp2 : Fp] = 2, the Galois groups of both splitting fields are

the unique group of order 2. In particular, their nontrivial (Frobenius) automorphisms are ζ3 7→ ζ23 = −ζ3 and
i 7→ i3 = −i respectively.

Problem 2. Show that Φ12 is reducible in F2[x] and F3[x].

Solution: In F2[x], Φ12 = x4−x2+1 = x4+x2+1. Since (a+b)2 = a2+b2, we have that x4+x2+1 = (x2+x+1)2.
In F3[x], Φ12 = x4 − x2 + 1 = x4 + 2x2 + 1 = (x2 + 1)2. Since Φ12(x) = 1 for all values of x over both finite
fields, Φ12 does not split further into linear factors.

Problem 3. Prove that Φ12 | (xp2−1 − 1) for every prime p ≥ 5. (Hint: Φ12 | (x12 − 1).)
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Solution: Note that p ≡ ±1 or ±5 (mod 12). Thus, p2−1 ≡ 12−1 or 52−1 ≡ 0 (mod 12). Hence, 12 | (p2−1),

implying x12 − 1 divides xp2−1 − 1. The statement follows immediately from the hint, obtained by noting that
Φn | (xn − 1) with n = 12.

Problem 4. Thus, prove that Φ12 is reducible in Fp[x] for all primes p.

Solution: We have proven the cases p = 2, 3. Let p ≥ 5 be a prime. Since xp2−1 − 1 splits completely over
Fp2 , so does Φ12. Because [Fp2 : Fp] = 2, this implies that the minimal polynomial in Fp[x] for any element of
Fp2 is at most degree 2. As such, Φ12 having all roots in Fp2 implies that it must have the (deg ≤ 2) minimal
polynomial of one of those roots as a factor, hence is reducible (in particular, into the product of two quadratics
uniquely).

Grade obtained: 75%.

Week 9 (23 Oct 2023)

Problem 1. Find a prime p such that (2) splits into exactly six prime ideals in Z[ζp].

Solution: Since Q(ζp) is a normal extension of Q, all the ramification indices ei and inertial degrees fi of Qi | (2)
are equal; so ref = [Q(ζp) : Q] = p − 1. Since clearly 2 does not divide p, it is unramified in Q(ζp). Hence,
we have r = 6 | (p − 1), and need only check primes p = 7, 13, 19, 31, · · · . We will use the fact that f is the
multiplicative order of p mod n.

p f (p− 1)/f = r
7 3 6/3 = 2
13 12 12/12 = 1
19 18 18/18 = 1
31 5 30/5 = 6

Therefore, (2) splits into exactly six primes in Z[ζ31].

Problem 2. Let n ∈ Z+, q ∈ Z be prime, and q ∤ n. Let Q be a prime ideal above q in Z[ζn] and
σ ∈ Gal(Q(ζn)/Q) with σ(ζn) = ζqn. Show that σ(Q) = Q. (Hint: f(xq) ≡ f(x)q (mod q) for f a polynomial.)

Solution: Let α =
∑n−1

i=0 aiζ
i
n ∈ Q, where ai ∈ Z. Note that the hint can be extended to f(xq) ≡ f(x)q (mod Q).

Then

σ(α) = σ

(
n−1∑
i=0

aiζ
i
n

)

=

n−1∑
i=0

aiσ(ζ
i
n)

=

n−1∑
i=0

aiζ
iq
n

≡

(
n−1∑
i=0

aiζ
i
n

)q

≡ αq (mod Q).

But since α ∈ Q, σ(α) ≡ αq ≡ 0 (mod Q), so σ(α) ∈ Q as well. Hence, we have that σ(Q) ⊆ Q, and because
σ(Q) is a prime ideal and thus a maximal ideal, σ(Q) = Q.

Problem 3. Show that (p) = (1 − ζp)
p−1 in Z[ζp], where p is a prime, and that (1 − ζp) is a prime ideal in

Z[ζp]. (Hint: (1− ζap ) = (1− ζp) for gcd(a, p) = 1.)

Solution: We have the following formula (in ordinary algebraic integers): (1 − ζp)(1 − ζ2p) · · · (1 − ζp−1
p ) = p.

Thus, (p) = (1− ζp)(1− ζ2p) · · · (1− ζp−1
p ) = (1− ζp)

p−1 (as ideals) as per the hint. Since ref = p− 1, (p) can
have no more than p− 1 prime ideal factors — which are clearly the p− 1 copies of (1− ζp).

Grade obtained: 85%.
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Week 13 (16 Nov 2023)

Problem 1. Which cyclotomic fields have only finitely many units? What are these units?

Solution: Dirichlet’s unit theorem states the following: The unit group of a number field K is of the form
U = W ×V , where W = µ(OK) is the multiplicative group of roots of unity in K, and V is a free abelian group
of rank r+ s− 1, where r and 2s are the number of real and nonreal embeddings of K into C respectively. For
n ≥ 3, cyclotomic fields have no real embeddings, so a cyclotomic field K := Q(ζn) has finitely many units iff
W is trivial, i.e., r + s− 1 = 0 or s = 1. [K : Q] = φ(n) = 2s, thus we seek all solutions to φ(n) = 2: these are
n = 3 and 4.

These units are then precisely the roots of unity µn ⊂ Q(ζn): in the case of Q(ζ3), {1, ζ3, ζ23}; and in the case
of Q(ζ4), {1, i,−1,−i}.

Problem 2. What are the units in Q(
√
−23)?

Solution: It is known that imaginary quadratic fields have only finitely many units; thus, we seek the roots
of unity µ(OK) in K := Q(

√
−23), i.e., elements α ∈ K such that N(α) = ±1. Since −23 ≡ 1 (mod 4), the

algebraic integers of K are of the form a+b
√
−23

2 , where a, b ∈ Z, a ≡ b (mod 2). Thus,

N

(
a+ b

√
−23

2

)
=

(
a+ b

√
−23

2

)(
a− b

√
−23

2

)
=

a2 + 23b2

4
= ±1,

or a2 + 23b2 = ±4. Clearly, any integer b > 0 will cause the LHS to exceed 4, so b = 0. This leaves us with

a = ±2 as the only solutions, so the only roots of unity are a+b
√
−23

2 = ±2
2 = ±1.

Alternatively, let ±p ≡ 1 (mod 4) be an odd prime, K = Q(
√
±p), and L = Q(ζp). It is known that OK is a

subring of OL = Z[ζp], which induces an injective homomorphism (say, ϕ) from the unit group of K to that of
L. In fact, since group homomorphisms preserve torsion, any root of unity in K is mapped to a root of unity
in L, which all satisfy ζp = ±1L. Let ε be a root of unity in K, then ϕ(εp) = ϕ(ε)p = ±1L = ϕ(±1K), so
εp − 1 = 0 in K (up to a sign).

Let α be algebraic of degree n. If α ∈ K, then n ≤ [K : Q(α)][Q(α) : Q] = [K : Q] = 2. Thus, we need only
consider elements of degree ≤ 2 satisfying εp = ±1. However, xn − 1 =

∏
d|n Φn(x), so any element satisfying

εp − 1 = 0 must have degree dividing p, i.e., 1 or p. Since the only roots of unity of degree 1 over Q are ±1,
these are precisely the roots of unity in Q(

√
±p). In particular, the units in Q(

√
−23) are exactly the roots of

unity, hence ±1.

Problem 3. What are the algebraic integers of Q(
√
−23)?

Solution: For r, s ∈ Q and d ≡ 1 (mod 4) squarefree, r + s
√
d is an algebraic integer iff x2 − 2rx + r2 − ds2

has integer coefficients. Thus, r = a
2 where a ∈ Z. If a ≡ 0 (mod 2), r2 − ds2 ∈ Z iff s ∈ Z. If a ≡ 1 (mod 2),

r2 − ds2 ∈ Z iff s ∈ 1
2Z− Z. This can be summarised as

A ∩Q(
√
d) =

{
a+ b

√
d

2
: a, b ∈ Z, a ≡ b (mod 2)

}
.

Problem 4. Prove that (2, (1 +
√
−23)/2) is a prime ideal above 2 in Q(

√
−23).

Solution: Let I be (2, (1 +
√
−23)/2). Since r ≤ ref = 2, 2 lies under at most two primes in OK .

Let J = (2, (1 −
√
−23)/2). We see that IJ = (2). Moreover, 2 does not divide 1+

√
−23
2 : there are no integers

a, b such that 1+
√
−23
2 = 2(a+b

√
−23

2 ) = a+ b
√
−23. Hence, I ̸= (2); by a similar argument, J ̸= (2). Notice that

we have exhibited exactly two ideals dividing (2). These must be distinct since 2 is unramified. Hence, I and
J are prime ideals.

Problem 5. Show that (2, (1 +
√
−23)/2) is nonprincipal in Q(

√
−23).

Solution: Note that ∥I∥ divides gcd(∥(2)∥, ∥((1 +
√
−23)/2)∥) = gcd(4, 6) = 2. Since ∥I∥ ̸= 1, ∥I∥ = 2.

Suppose I = (α) for some algebraic integer α = a+b
√
−23

2 , where a, b ∈ Z, a ≡ b (mod 2). Then since

∥(α)∥ = |N(α)| = a2+23b2

4 = 2, we must have a2 +23b2 = 8, which has no solutions in integers. Hence, I cannot
be principal.

Grade obtained: 85%.
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