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Introduction

Example 1.1
The algebraic closure of R is C — [C : R] = 2.
The algebraic closure of Ralg := A ∩ R is A — [A : Ralg] = 2.
The algebraic closure of Q is Q — [Q : Q] =∞.
Obviously C = C and A = A.

Problem
What values can the degree of an algebraic closure take on?
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The Artin–Schreier theorem

Theorem (Artin–Schreier)
Suppose F is a field not algebraically closed, and C := F is a finite extension. Then F
has characteristic 0 and C = F (i).

Of course, as a corollary, [F : F ] is 1, 2, or ∞.
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Lemmas

Lemma 1.2
Let F be a field of characteristic p > 0, and a ∈ F . If a /∈ F p, then xpm − a is
irreducible in F [x ] for all m ≥ 1.
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Lemmas

We prove the contrapositive: if xpm − a is reducible for some m ≥ 1, then F p contains
a.

Let xpm − a = f (x)g(x), where f , g ∈ F [x ] are monic. Let E be an extension of F
containing a root b of of xpm − a, so xpm − a = xpm − bpm

= (x − b)pm in E [x ]. Thus
f = (x − b)r for some 0 < r < pm. Let r = pks. where p ∤ s. Then

f (x) = (xpk − bpk
)s = xpks − sbpk xpk(s−1) + · · · ± bpks ,

so −sbpk and thus bpk are in F .

Hence, a = (bpk
)pm−k ∈ F pm−k ⊂ F p.
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Lemmas

Proposition 1.3 (Artin–Schreier extensions)
Let F be a field of characteristic p > 0 and K/F cyclic of degree p. Then K = F (α),
where α is a root of xp − x − a for some a ∈ F .
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Lemmas

Let σ be a generator for Gal(K/F ). Note that since −1 ∈ F so σ(−1) = −1, we have

K/F (−1) =
∑

τ∈Gal(K/F )

τ(−1) =
p−1∑
k=0

σk(−1) = p(−1) = 0.

By the additive form of Hilbert’s theorem 90, there exists α ∈ K such that
−1 = α− σα. Then, for k = 0, 1, · · · , p − 1, σkα = α+ k are the p conjugates of α
in K , and thus [F (α) : F ] = p so K = F (α). Since σ fixes F and

σ(αp − α) = (α+ 1)p − (α+ 1) = αp + 1− α− 1 = αp − α,

αp − α is an element of F .
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Lemmas

Proposition 1.4 (Kummer extensions)
Let n > 1. Any cyclic extension of degree n over a field F of characteristic q ∤ n
containing the nth roots of unity is of the form F ( n

√
a) for some a ∈ F .

We omit the proof of the above, which proceeds in a similar fashion as the previous
proposition.
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Lemmas

Lemma 1.5
Let F be a field where −1 is not a square (so in particular ch F 6= 2), and every
element of F (i) is a square. Then every finite sum of squares in F is itself a square in
F , and ch F = 0.
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Lemmas

Without loss of generality, we prove the lemma for a sum of two squares. Let a, b ∈ F .
There exist elements c, d ∈ F such that a + bi = (c + di)2 = (c2 − d2) + (2cd)i . So

a2 + b2 = (c2 − d2)2 + (2cd)2

= c4 − 2c2d2 + d4 + 4c2d2

= (c2 + d2)2.

Suppose ch F = p > 0. Then −1 = 1 + · · ·+ 1︸ ︷︷ ︸
p−1 copies

, a finite sum of squares and thus itself

a square; this contradicts our hypothesis. Therefore F must have characteristic 0.
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Proof of Artin–Schreier

Now we are prepared to prove the Artin–Schreier theorem.

Theorem 1.6 (Artin–Schreier, 1926)
Let C be algebraically closed with a subfield F such that 1 < [C : F ] <∞. Then
C = F (i) and ch F = 0. Furthermore, for every nonzero a ∈ F , either a or −a is a
square in F , and every finite sum of squares in F is itself a square in F .

Jake Lai
MH4920 Galois Theory & Number Fields — Final Presentation 12 / 30



The Artin–Schreier theorem Dirichlet’s unit theorem References

Proof of Artin–Schreier

Now we are prepared to prove the Artin–Schreier theorem.

Theorem 1.6 (Artin–Schreier, 1926)
Let C be algebraically closed with a subfield F such that 1 < [C : F ] <∞. Then
C = F (i) and ch F = 0. Furthermore, for every nonzero a ∈ F , either a or −a is a
square in F , and every finite sum of squares in F is itself a square in F .

Jake Lai
MH4920 Galois Theory & Number Fields — Final Presentation 12 / 30



The Artin–Schreier theorem Dirichlet’s unit theorem References

Proof of Artin–Schreier: C/F is Galois

We begin by showing that C/F is Galois. Recall the definition of Galois extensions as
normal and separable. Since C is algebraically closed, it is a normal extension (every
irreducible polynomial in F [x ] splits linearly over C).

If ch F = 0, F is perfect and thus C/F is automatically separable. Assume
ch F = p > 0. We claim that F = F p (i.e., the Frobenius endomorphism a 7→ ap is an
automorphism), which implies that F is perfect.

Suppose there exists an element a in F but not in F p. Then xpm − a is irreducible in
F [x ] for all m ≥ 1, so we may construct arbitrarily large algebraic extensions of F ,
contradicting the finiteness of [C : F ]. Thus F ⊆ F p ⊆ F .
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Proof of Artin–Schreier: [C : F ] is never odd p or 4

Let G = Gal(C/F ) so [C : F ] = |G |. If |G | > 2, then |G | is divisible by an odd prime
or 4, so G contains a subgroup H of order an odd prime or 4 due to the existence of
Sylow p-subgroups. By the fundamental theorem of Galois theory, C has a subfield K
containing F such that [C : K ] is an odd prime or 4.

C

K

F

odd p or 4
←→

1

H

G

odd p or 4

Thus, to prove that [C : F ] = 2, we seek to show that [C : F ] = [C : K ][K : F ] is never
divisible by an odd prime or 4. In fact, it suffices to disprove the existence of any
subfield F with [C : F ] equals an odd prime or 4.
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Proof of Artin–Schreier: C/F is not Artin–Schreier

Assume [C : F ] = p a prime, so that G ∼= Z/pZ is cyclic. Suppose F is of
characteristic p. Then according to Artin–Schreier theory, C = F (α), where α is a root
of some xp − x − a ∈ F [x ]. Since {1,α, · · · ,αp−1} is an F -basis of C , we can write
any b = b0 + b1α+ · · ·+ bp−1α

p−1, with coefficients bj in F . Since C is algebraically
closed, we can choose b such that bp − b = aαp−1.

Then

bp − b =

p−1∑
j=0

(bjα
j)p − bjα

j

=

p−1∑
j=0

bp
j (α+ a)j − bjα

j

= (bp
p−1 − bp−1)α

p−1 +��· · ·.

Jake Lai
MH4920 Galois Theory & Number Fields — Final Presentation 15 / 30



The Artin–Schreier theorem Dirichlet’s unit theorem References

Proof of Artin–Schreier: C/F is not Artin–Schreier

Assume [C : F ] = p a prime, so that G ∼= Z/pZ is cyclic. Suppose F is of
characteristic p. Then according to Artin–Schreier theory, C = F (α), where α is a root
of some xp − x − a ∈ F [x ]. Since {1,α, · · · ,αp−1} is an F -basis of C , we can write
any b = b0 + b1α+ · · ·+ bp−1α

p−1, with coefficients bj in F . Since C is algebraically
closed, we can choose b such that bp − b = aαp−1. Then

bp − b =

p−1∑
j=0

(bjα
j)p − bjα

j

=

p−1∑
j=0

bp
j (α+ a)j − bjα

j

= (bp
p−1 − bp−1)α

p−1 +��· · ·.

Jake Lai
MH4920 Galois Theory & Number Fields — Final Presentation 15 / 30



The Artin–Schreier theorem Dirichlet’s unit theorem References

Proof of Artin–Schreier: C/F is not Artin–Schreier

Thus bp−1 ∈ F is a root of xp − x − a, which is a contradiction
since xp − x − a is known to be irreducible. As a consequence, F
is not of characteristic p = [C : F ].

Since C is algebraically closed of characteristic 6= p, it must
contain the roots of xp − 1, i.e., the pth roots of unity. Because
[F (ζp) : F ] ≤ p − 1 and [C : F ] = p, [F (ζp) : F ] is forced to be
1, so ζp ∈ F . By Kummer theory, C = F ( p

√
a) for some a ∈ F .

Assumptions:
[C : F ] = p prime.

Results:
ch F ̸= p.

C = F ( p√a), a ∈ F .
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Proof of Artin–Schreier: Implications of C/F being Kummer

Choose β ∈ C such that βp = p
√

a; so βp2 ∈ F . Let σ be a
generator for G = Gal(C/F ), so since βp2

= σ(βp2
) = σ(β)p2 ,

σβ = ωβ for some ωp2
= 1. We cannot have ωp = 1, since this

would imply

σ(βp) = σ(β)p

= ωpβp

= βp,

or p
√

a = βp ∈ F : a contradiction. So ωp 6= 1.

Assumptions:
[C : F ] = p prime.

Results:
ch F ̸= p.
C = F ( p√a), a ∈ F .

ωp ̸= 1.
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Proof of Artin–Schreier: Implications of C/F being Kummer

ωp is a pth root of unity, and hence lies in F and is fixed by σ:

ωp = σ(ωp) = σ(ω)p,

therefore, σ(ω) = ζω, where ζ is some pth root of unity. Set
ζ = ωpk for some integer k.

Thus,

β = σp(β)

= σp−1(ωβ)

= · · ·
= ωσ(ω) · · ·σp−1(ω)β

= ω1+(1+pk)+···+(1+pk)p−1
β.

Assumptions:
[C : F ] = p prime.

Results:
ch F ̸= p.
C = F ( p√a), a ∈ F .
ωp ̸= 1.
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Proof of Artin–Schreier: Implications of C/F being Kummer

Thus,

1 + (1 + pk) + (1 + pk)2 + · · ·+ (1 + pk)p−1 ≡ 0 (mod p2)

1 + (1 + pk) + (1 + 2pk) + · · ·+ (1 + (p − 1)pk) ≡ 0 (mod p2)

p +
p(p − 1)

2 pk ≡ 0 (mod p2)

1 +
p(p − 1)

2 k ≡ 0 (mod p).

The last congruence can be satisfied only if p = 2. In fact, it
can be shown that ω2 = −1 so that C = F (i).

Assumptions:
[C : F ] = p prime.

Results:
ch F ̸= p.
C = F ( p√a), a ∈ F .
ωp ̸= 1.
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Proof of Artin–Schreier: Implications of C/F being Kummer

Thus,

1 + (1 + pk) + (1 + pk)2 + · · ·+ (1 + pk)p−1 ≡ 0 (mod p2)

1 + (1 + pk) + (1 + 2pk) + · · ·+ (1 + (p − 1)pk) ≡ 0 (mod p2)

p +
p(p − 1)

2 pk ≡ 0 (mod p2)

1 +
p(p − 1)

2 k ≡ 0 (mod p).

The last congruence can be satisfied only if p = 2. In fact, it
can be shown that ω2 = −1 so that C = F (i).

Results:
If [C : F ] is prime,
C = F (i) with
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Proof of Artin–Schreier: [C : F ] 6= 4

Finally, suppose [C : F ] = 4. Since Gal(C/F ) then has a
subgroup of order 2, there must be an intermediate field
F ⊂ K ⊂ C with [C : K ] = 2. We just showed that i cannot be
in any such field K with [C : K ] = 2, but

[C : F (i)] = [C : F ]/[F (i) : F ] = 4/2 = 2

and clearly i ∈ F (i); a contradiction.

Thus, [C : F ] 6= 4, so the only possibility is that [C : F ] = 2. All
that remains is to show that F has characteristic 0.

Results:
If [C : F ] is prime,
C = F (i) with
ch F ̸= 2.
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Proof of Artin–Schreier: ch F = 0

Suppose a and −a are both not squares in F . Then C = F (
√

a) = F (
√
−a). Since√

−a√
a = (

√
a)(

√
−a)

a ∈ F (the product of roots is the constant coefficient, hence in F ),
−a
a = −1 is a square in F , which contradicts i /∈ F . Thus, exactly one of a and −a is a

square in F .

Noticing that all hypotheses are satisfied, we may apply Lemma 1.5 to conclude the
proof.
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Some remarks

Such fields F are called real closed fields, and there is a notion of the real closure of an
ordered field. Such fields were also studied as part of mathematical logic (model
theory) by Tarski in the 1930s.

Using Artin–Schreier theory, Artin (1927) also resolved Hilbert’s 17th problem
affirmatively: every positive semi-definite polynomial f ∈ F [x ] over a real closed field F
can be represented as the sum of squares of rational functions ri ∈ F (x).

We proved the basic results of Kummer theory and Artin–Schreier theory using
Hilbert’s theorem 90, which rested on the linear independence of characters. But
Theorem 90 can also be recast more generally for non-cyclic extensions in terms of
Galois cohomology, the (co)homology of modules acted on by a Galois group. Galois
cohomology appears elsewhere: e.g., underlying the arithmetic of elliptic curves, in
local class field theory (my next stop, I think).
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Disclaimer

(This section was created post hoc! The second half of the original presentation was
conducted using the whiteboard. The notes are available at
https://jakelai.me/gtnfnotes.pdf.)
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Dirichlet’s unit theorem

Let K be a number field of degree n over Q, with r1 real and 2r2 nonreal embeddings.

Theorem (Dirichlet’s unit)
The unit group of a number ring OK is of the form O×

K
∼= µ(OK )×W , where W is a

free abelian group of rank r1 + r2 − 1. (Every unit is of the form ζεm1
1 · · · εmr

r — the εi
are multiplicatively independent, together a fundamental system of units.)

We use Minkowski’s geometry of numbers.
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Proof of the unit theorem: G/U is compact

Embed OK in V := Rr1 × Cr2 as a lattice ∧, and O×
K as

U ≤ G := {v ∈ V : |N(v)| = 1}.

Lemma 2.1
For each positive integer N, only finitely many a ∈ OK satisfy |NK

Q(a)| = N (up to
multiplication by a unit).

By Minkowski’s theorem, for any g ∈ G there exists a compact, centrally symmetric
convex body g−1C ⊂ V such that there is some nonzero a ∈ g−1C ∩ (∧ − {0}).
|NK

Q(a)| = |N(a)| ∈ |N(g−1C)| = |N(C)| (bounded set since C is compact).
NK
Q(a) ∈ Z, so there must be finitely many values N = |NK

Q(a)| (a bounded set of
integers is finite).
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Proof of the unit theorem: G/U is compact

Thus there are finitely many ai such that aiU has a point lying in g−1C . ‘Multiply’
this picture by ga−1

i : every coset gU has a representative lying in some a−1
i C .

G ∪
⋂

i a−1
i C is the intersection of closed G and a finite union of compact sets, itself

compact; it contains all coset representatives of G/U, so there is a surjection onto
G/U. Thus,

Theorem
G/U is compact.
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Proof of the unit theorem: structure of ker L|U

The logarithmic mapping L : V → Rr1+r2 takes (· · · , xi , · · · , zj · · · ) to
(· · · , log |xi |, · · · , 2 log |zj |, · · · ) and maps G to the hyperplane {(yi) :

∑
i yi = 0} of

dimension r1 + r2 − 1.

The kernel of L restricted to U is compact and discrete, hence finite, so must be
comprised of roots of unity of U. But all roots of unity of U are in ker L|U . Hence the
kernel of L|U is precisely µ(OK ).
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Proof of the unit theorem: structure of L(U)

L is a continuous surjective group homomorphism, so the induced map
G/U → L(G)/L(U) is also surjective. Thus, L(G)/L(U) is compact. But the only way
the quotient of Rr modulo a discrete subgroup is compact is the subgroup has rank r .
(Consider the noncompact cylinder R2/Z vs. the compact torus R2/Z2.)

Therefore, since L(G) ∼= Rr1+r2−1, L(U) ∼= Zr1+r2−1. By the fundamental
homomorphism theorem:

U ∼= µ(OK )× Zr1+r2−1.

The multiplicative independence of the εi ’s follows from the Z-linear independence of
their images under L.
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Applications

Theorem (Artin)
Let OK be the number ring of a cubic field K with r1 = 1, r2 = 1, so O×

K has rank
1 + 1− 1 = 1. Viewing K in R, if u > 1 is a unit of OK , then 4u3 + 24 > |discOK |.

As a collorary, if 4u3/2 + 24 ≤ |discOK |, then u = ε the fundamental unit of OK . In
Q( 3√2), discOK = −108. u = 1 + 3√2 + 3√4 ≈ 3.847 satisfies
4u3/2 + 24 ≈ 54.185 ≤ 108, so u is the fundamental unit.
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Applications

Let r = r1 + r2 − 1, and u1, · · · , ur be units in K . Consider the r × (r + 1) matrix

M =

log |σ1(u1)| · · · 2 log |τr2(u1)|
... . . . ...

log |σ1(u1)| · · · 2 log |τr2(ur )|


Each row of M sums to 0; removing any column does not change the determinant of
the resulting matrix M ′.

The regulator reg(u1, · · · , ur ) := | detM ′|. The regulator of a number ring regOK is
the regulator of its fundamental units. In a way, the regulator measures the ‘density’ of
the units.
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Applications

The regulator also appears in the remarkable class number formula:

lim
s→1

(s − 1)ζK (s) =
2r1(2π)r2 · regOK · h
|µ(OK )|

√
|discOK |

,

where h is the class number, or size of the ideal class group.

Generalisations of the regulator (higher regulators) are involved in results and
conjectures on special values of L-functions: Birch–Swinnerton-Dyer, Stark, Beilinson.

‘In my opinion, conjectures about special points and special values of L-functions are
the most beautiful in all of mathematics.’

— Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools.
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Thank you!
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