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Jake Lai

(You need a minimum of high school/JC/IB/etc. calculus and all its prerequisites. Problems roughly go from
less to more ‘applied’, whatever that means.)

Preliminaries:

‘:=’ means ‘is defined as’.

Sets are collections of arbitrary things we call elements.

Write x ∈ S to indicate an element x is contained in S.

Write T ⊆ S to denote that T is a subset of S, i.e., ‘x ∈ T implies x ∈ S’.

The natural numbers is the set N := {1, 2, 3, · · · }.

The familiar real number line is usually written R, whose elements include − 1
3 ,

√
2, and πe.

Functions (written f : S → T ) are rules that take a given element x ∈ S and return an element y ∈ T ;
more familiarly, y = f(x).

1 Pure

1.1 Logic

How might we compare the sizes of infinite sets? It makes sense that two sets have the same size if there is
a function f : S → T such that f has an ‘inverse’ f−1 : T → S satisfying f(f−1(y)) = y and f−1(f(x)) = x
for all x ∈ S, y ∈ T . Functions with inverses are called bijections. The existence of a bijection is, in fact, the
definition of two sets having equal size (or cardinality).

Problem. A bijection between N and another set S is the same as finding a ‘counting’ procedure to list out all
elements of S one by one. Find a bijection between N and Z (the set of all integers). Find a bijection between
N and Q+ (the set of all positive fractions) by laying the elements of Q+ out on a 2D grid.

(Hint: It doesn’t work to count the positive rational numbers going ‘horizontally’, nor does it work to go
‘vertically’ either. The counting procedure needs to cover each and every positive rational number. [Sub-hint:
You have to ‘snake’ across the 2D grid of positive rational numbers — but how?])

We can conclude that |N| = |Z| = |Q+| = |Q|, where |S| denotes the size of the set S.

Bonus. (Cantor diagonalisation) We prove that no bijection exists between N and R := (0, 1) (the set of real
numbers 0 < x < 1). Identify the elements of the latter with the decimal expansion x = 0.x1x2x3 · · · . First
assume that there is such a bijection, so that we may list the elements of R sequentially:

0 . x
(1)
1 x

(1)
2 x

(1)
3 · · ·

0 . x
(2)
1 x

(2)
2 x

(2)
3 · · ·

0 . x
(3)
1 x

(3)
2 x

(3)
3 · · ·

...

By our assumption, this list should include every element of R. However, I can produce an element of R outside

the list: 0.y1y2y3 · · · , by defining yn :=

{
1 if x

(n)
n = 0

0 if x
(n)
n ̸= 0

. Since our construction differs from every element in

the list by at least one digit, it lies outside the list. Thus, our assumption must be false, and there is no bijection
N ↔ R. Can you produce a bijection between R and R? What does this say about |N| and |R|?
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1.2 Algebra/Combinatorics

A group is a set G together equipped with a binary operator (read: function) µ : G × G → G. If a, b ∈ G,
we will be lazy and write a · b or ab when we really mean µ(a, b). Groups (G,µ) are required to follow certain
defining rules (axioms):

1. (Associativity) For all a, b, c ∈ G, (ab)c = a(bc).

2. (Identity) There exists some element e ∈ G (the ‘identity ’) such that, for all a ∈ G, ae = a = ea.

3. (Inverses) For all a ∈ G, there exists b ∈ G (commonly denoted a−1 and called the ‘inverse’) such that
ab = ba = e.

(Note that groups need not be commutative, i.e., generally ab ̸= ba.)

In order to even state the axiom on inverses, we need to prove that the identity element of a given group G is
unique.

Problem. Let e ∈ G be an identity. Prove that identities are unique.

(Hint: You just need to show that if e1, e2 ∈ G are identities, then e1 = e2. [Sub-hint: You have been given two
elements. What can you do with them?])

Bonus. If G is finite, prove that there is a positive integer m ∈ N such that for all a ∈ G, am = e.

(Hint: Consider the sequence
a, a2, a3, · · · , am, · · · , an, · · · .

[Sub-hint: Apply the pigeonhole principle. Look it up if you don’t know what that is.])

1.3 Analysis

A sequence is a list of real numbers x1, x2, x3, · · · ∈ R, which we will commonly write (xi)i∈N or simply (xi).
A subsequence (xik)k∈N is a sequence where 1 ≤ i1 < i2 < i3 < · · · are all integers. We would like to show
that all sequences (xi) have a infinite subsequence (xik) that is either nondecreasing (if i < j, then xi ≤ xj) or
nonincreasing (if i < j, then xi ≥ xj).

Observe that every (xi) has ‘peaks’ at some integer n, where xm ≤ xn for every m > n.

Problem. [Case 1] If there are infinitely many peaks at i1, i2, i3, · · · , what be said about the infinite subsequence
(xik) of such peaks? [Case 2] On the other hand, if there are finitely many peaks i1, i2, · · · , iN , how should we
construct (read: give a procedure for choosing elements of) a subsequence (xjk), where j1 = iN + 1?

(Hint [Case 2]: j1 is not a peak, so what is an option for the choice of j2? Continuing, jk is not a peak, so what
should we choose for jk+1?)

Bonus. (Bolzano–Weierstrass) A sequence (xi) is bounded if there exist a, b ∈ R such that for all i ∈ N, a ≤ xi ≤
b (a/b are called lower/upper bounds respectively). If you know that a bounded nondecreasing/nonincreasing
sequence (xi) gets arbitrarily close (‘converges’) to its upper/lower bound respectively, then do all bounded
sequences have a converging subsequence?

2 Applied

2.1 Analysis

See 1.3 above.

2.2 Probability

WIP. Probably Markov chain.

2.3 Numerics

WIP. Probably Lagrange interpolation.
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3 Statistics

3.1 Analysis

See 1.3 above.

3.2 Probability

See 2.2 above.

3.3 Statistics

WIP. Probably unbiased estimator of σ2.
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