The following exposition of Loewner’s torus inequality is based on Chapters 3-6 of the monograph Systolic
Geometry and Topology by Mikhail Katz.

1 Geometric preliminaries

Def. By a (2-dimensional) closed Riemannian manifold, we mean a compact subset ¥ C R™ whose every point
has an open neighbourhood diffeomorphic to R2.

One uses the diffeomorphisms as a parametrisation to calculate, for example, the coefficients g;; of the first
fundamental form I. Denote by the manifold by (3, G), where G is referred to as the ‘metric’. ¥ captures the
topology. G captures the geometry.

For the intrinsic geometry of a Riemannian manifold, the immersion in R” is irrelevant. In particular, manifolds
such as flat tori are difficult to embed transparently.

Example: S? C R3. Letting f(x,y) = /1 — 22 — 42, (u1,u2) > (u1,us, f(u,uz)) is one chart. (We need six
such charts.)

Y

For vectors, we work with the dual bases 5-— for vectors and du; for covectors, such that
J

1 ifie
du; <8) =08, = 1 Z ‘] . (the Kronecker delta)
Ou; ’ 0 ifi#y

We can thus write the first fundamental form as follows:
g = Zgij (Uh ug)duzduj
1)
(I will ignore details re: differential forms, tensor algebra, etc., and also take for granted that every smooth
manifold can be endowed with a Riemannian metric structure.)
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Def. Define the area of (X,G) as

Example: If 9ij = 51”', i.e., I= < ), then g = (du1)2 + (dUQ)2.

\/det(gi;) duidus,

by choosing a partition {U} of ¥. Area is independent of choice of partition.

area(X) = Z/

'Y

Def. Two metrics G = Z” gijdu;du; and H = Z” hijdu;du; are conformally equivalent or simply conformal
if there exists a function f(u1,uz2) > 0 such that G = f?H, i.e., gi; = f?hy; for all i,j. f is called the conformal
factor. The length of every vector at (u1,us) is multiplied by f(u1,us).

An equivalence class of metrics on 3 conformal to one another is called a conformal structure on X.

Thm. (Riemann uniformisation € mapping) Every metric on a connected surface is conformally equivalent to
a metric of constant Gaussian curvature K = K1ks.

Riemann surface theory: every Riemann surface is covered by one of the sphere, the plane, or the Poincaré
upper half-plane (hyperbolic geometry).

Classically: a simply connected domain of C is mapped onto the open disk D by a bijective and holomorphic
— hence conformal! — map.

Def. A curve § =z o« (z is the param. of a surface; a is the arclength param. of a plane curve) is a geodesic
on z if one of the following equivalent conditions are satisfied:

(i) For k =1,2, o/ + Tk.ala/; = 0.

ij Qi
(ii) B" = Lijojalv.



(Here, v is the unit normal vector, L;; := (v, z;;) is the second fundamental form II, and I‘fj is determined by

_ &% _ 11 2 ..
Tij = Fuida; = Lim + Tx + Lijv.)

A closed geodesic is defined in the obvious way.
The length of a path §: [a,b] — X is
b
len(8) = [ 18'0)] at,
where ||v]| = /) g5;0iv;.
Def. A (Riemannian) metric is flat if its Gaussian curvature K vanishes everywhere.

A closed surface of constant K = 0 is topologically either a torus T2 or a Klein bottle. A flat torus may be
identified with R?/A, for A a 2-dimensional lattice.
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2 Topological preliminaries

Def. A loop in X is a continuous map [a,b] = X such that y(a) = v(b).

A loop is contractible if it can be continuously ‘shrunk down’ to a point. Equivalently, S' — X extends to
a map D? — X: the loop does not bound a ‘hole’. (Technical details in Chapters 0-1 of Hatcher, Algebraic
Topology.) X is simply connected if every loop in X is contractible. Example: R™ — {0} for n > 2.

Def. The set of homotopy equivalence classes of loops in X forms a group under concatention of loop (represen-
tatives), called the fundamental group 71 (X). If spaces X and Y are homotopy equivalent, then 71 (X) = 71 (V).

Examples:
1) m(SY) =2 Z, but 71(S™) =0 for n > 1.
2) w1 (St Vv S') = Fy, the free group on two generators.
3) m(T?) = m (St x St) = (a,b| ab = ba) = Z2.
(*) Thm. Every homotopy class of loops in a closed manifold contains a closed geodesic.

Thm. (Gauss-Bonnet) Every closed (orientable) surface satisfies

/EK(ul,ug)\/det(gij) duydus = 27x(2),

where x = 2 — 2g is the Fuler characteristic of ¥ and g is the genus of X, thought of as the number of ‘holes’.
Examples: g = 0 for S?; g = 1 for T?.

3 Loewner’s torus inequality

Def. Let (M,G) be a Riemannian manifold. The systole of G is sysmi(G) = irbl’f len(B), defined as the infi-

mum of lengths of § taken over noncontractible loops in (M, G) (draw a torus and a genus 2 surface with
systoles highlighted).

By (%), the infimum is always attainable; Bsys is necessarily a closed geodesic.

Thm. (Loewner, 1949) Every Riemannian metric G on the torus 72 satisfies

sysm1(G)? < % area(G).



Equality is obtained precisely for the flat torus C?/A, where the lattice A = Z[w] is the Eisenstein integers
generated by the integral basis 1,w = €*™/3 (draw a graph of A C C, highlighting the fundamental
parallelogram).

The constant v, = 2/4/3 is the Hermite constant for d = 2, related to the hexagonal packing being the densest
circle packing in R2.

Proof: The proof relies on the conformal representation ¢ : Tay — (T2,G), where Ty, is a flat torus. Such a
representation is possible by the uniformisation theorem. Let f be the conformal factor so that

G = f*(dui + du3),
where du? + du3 is (locally) the flat metric for Tq,; obtained earlier.

Let £y be any closed geodesic in Th,t, and £ the family of geodesics parallel to ¢y. Parametrise £; by a circle of
length o, such that
o - by = area(Tqat).

(For ¢, we slightly abuse notation and mean both the geodesic and its length.)

Taa: — S! is a Riemannian submersion. We have

area(T?) = f?dA = (/ f? dt) ds,
That St s

where the last equality ‘separating’ the double integral follows from Fubini’s theorem from analysis.

By the Cauchy—Schwarz inequality,

(/gsfdt>2</£51dt/esf2dt:£0/esf2dt.

area(T?) > %/Sl(len b(L,))? ds,

0

and so there must be an so € S* such that area(T?) > 7 (len ¢(£s,))?, so that len ¢(£,) < £o. We have thus re-
duced the proof to the flat case, which can easily be examined visually (draw the fundamental parallelogram
of That = C/Z[w] with area /3/2 and the circle argz = 7/3 on its surface, showing visually that
this achieves the minimum o//y =1 attainable). O

Therefore, we have that

4 Other systolic results

There is also Pu’s inequality for a Riemann surface M homeomorphic to the real projective plane RP?:

Thm. (Pu, 1950)
sysm (M)? < garea(M).

Again, this bound is sharp.

The systolic ratio (SR) for RP? is thus 7/2. SR is 2/v/3 for the torus T2 as proven above; 7/23/2 for the
Klein bottle RP2#RP? (Bavard, 1986); and (1 + v/2)/3 = 0.8047... < SR < 2//3 for the surface of genus 2
(Katz-Sabourau, 2006). Conjecturally, the SR for surfaces of positive genus g is 2/4/3; this is known to be true
for g > 20 (Katz—Sabourau, 2005).

For higher dimensions, we have Gromov’s systolic inequality for the class of ’essential manifolds’:

Thm. (Gromov, 1983)
sysm (M)" < C,, vol M
C,, depends only on the dimension of the manifold M.

For the notion of a 2-systole, the infimum of areas of 2-cycles representing CP! ¢ CP" =% Ue?U---Ue™:

Thm. (Gromov, 1981)
stsysy > nlvol(CP").

Applications: There is a link to quantum error correcting codes which goes by the name of Zs-systolic freedom,
due to Freedman and Hastings (circa 2000). Fetaya (2011) provides a link to homological error correcting codes.
Unfortunately, whether qeccs and heccs are the same things or what said links even are, I've absolutely no clue.



