
The following exposition of Loewner’s torus inequality is based on Chapters 3-6 of the monograph Systolic
Geometry and Topology by Mikhail Katz.

1 Geometric preliminaries

Def. By a (2-dimensional) closed Riemannian manifold, we mean a compact subset Σ ⊂ Rn whose every point
has an open neighbourhood diffeomorphic to R2.

One uses the diffeomorphisms as a parametrisation to calculate, for example, the coefficients gij of the first
fundamental form I. Denote by the manifold by (Σ,G), where G is referred to as the ‘metric’. Σ captures the
topology. G captures the geometry.

For the intrinsic geometry of a Riemannian manifold, the immersion in Rn is irrelevant. In particular, manifolds
such as flat tori are difficult to embed transparently.

Example: S2 ⊂ R3. Letting f(x, y) =
√
1− x2 − y2, (u1, u2) 7→ (u1, u2, f(u1, u2)) is one chart. (We need six

such charts.)

For vectors, we work with the dual bases ∂
∂uj

for vectors and dui for covectors, such that

dui

(
∂

∂uj

)
= δi,j :=

{
1 if i = j

0 if i ̸= j
. (the Kronecker delta)

We can thus write the first fundamental form as follows:

G =
∑
i,j

gij(u1, u2)duiduj .

(I will ignore details re: differential forms, tensor algebra, etc., and also take for granted that every smooth
manifold can be endowed with a Riemannian metric structure.)

Example: If gij = δi,j , i.e., I =

(
1 0
0 1

)
, then G = (du1)

2 + (du2)
2.

Def. Define the area of (Σ,G) as

area(Σ) =
∑
{U}

∫
U

√
det(gij) du1du2,

by choosing a partition {U} of Σ. Area is independent of choice of partition.

Def. Two metrics G =
∑

i,j gijduiduj and H =
∑

i,j hijduiduj are conformally equivalent or simply conformal

if there exists a function f(u1, u2) > 0 such that G = f2H, i.e., gij = f2hij for all i, j. f is called the conformal
factor. The length of every vector at (u1, u2) is multiplied by f(u1, u2).

An equivalence class of metrics on Σ conformal to one another is called a conformal structure on Σ.

Thm. (Riemann uniformisation & mapping) Every metric on a connected surface is conformally equivalent to
a metric of constant Gaussian curvature K = κ1κ2.

Riemann surface theory: every Riemann surface is covered by one of the sphere, the plane, or the Poincaré
upper half-plane (hyperbolic geometry).

Classically: a simply connected domain of C is mapped onto the open disk D by a bijective and holomorphic
— hence conformal! — map.

Def. A curve β = x ◦ α (x is the param. of a surface; α is the arclength param. of a plane curve) is a geodesic
on x if one of the following equivalent conditions are satisfied:

(i) For k = 1, 2, α′′
k + Γk

ijα
′
iα

′
j = 0.

(ii) β′′ = Lijα
′
iα

′
jν.
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(Here, ν is the unit normal vector, Lij := ⟨ν, xij⟩ is the second fundamental form II, and Γk
ij is determined by

xij =
∂2x

∂ui∂uj
= Γ1

ijx1 + Γ2
ijx2 + Lijν.)

A closed geodesic is defined in the obvious way.

The length of a path β : [a, b] → Σ is

len(β) :=

∫ b

a

∥β′(t)∥ dt,

where ∥v∥ =
√∑

gijvivj .

Def. A (Riemannian) metric is flat if its Gaussian curvature K vanishes everywhere.

A closed surface of constant K = 0 is topologically either a torus T 2 or a Klein bottle. A flat torus may be
identified with R2/Λ, for Λ a 2-dimensional lattice.

a

b

a

b

a

b

a

b

2 Topological preliminaries

Def. A loop in X is a continuous map [a, b]
γ−→ X such that γ(a) = γ(b).

A loop is contractible if it can be continuously ‘shrunk down’ to a point. Equivalently, S1 → X extends to
a map D2 → X: the loop does not bound a ‘hole’. (Technical details in Chapters 0-1 of Hatcher, Algebraic
Topology.) X is simply connected if every loop in X is contractible. Example: Rn − {0} for n > 2.

Def. The set of homotopy equivalence classes of loops in X forms a group under concatention of loop (represen-
tatives), called the fundamental group π1(X). If spaces X and Y are homotopy equivalent, then π1(X) ∼= π1(Y ).

Examples:

1) π1(S
1) ∼= Z, but π1(S

n) ∼= 0 for n > 1.

2) π1(S
1 ∨ S1) ∼= F2, the free group on two generators.

3) π1(T
2) = π1(S

1 × S1) = ⟨a, b | ab = ba⟩ ∼= Z2.

(∗) Thm. Every homotopy class of loops in a closed manifold contains a closed geodesic.

Thm. (Gauss–Bonnet) Every closed (orientable) surface satisfies∫
Σ

K(u1, u2)
√

det(gij) du1du2 = 2πχ(Σ),

where χ = 2− 2g is the Euler characteristic of Σ and g is the genus of Σ, thought of as the number of ‘holes’.
Examples: g = 0 for S2; g = 1 for T 2.

3 Loewner’s torus inequality

Def. Let (M,G) be a Riemannian manifold. The systole of G is sysπ1(G) := inf
β

len(β), defined as the infi-

mum of lengths of β taken over noncontractible loops in (M,G) (draw a torus and a genus 2 surface with

systoles highlighted).

By (∗), the infimum is always attainable; βsys is necessarily a closed geodesic.

Thm. (Loewner, 1949) Every Riemannian metric G on the torus T 2 satisfies

sysπ1(G)2 ≤ 2√
3
area(G).
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Equality is obtained precisely for the flat torus C2/Λ, where the lattice Λ = Z[ω] is the Eisenstein integers
generated by the integral basis 1, ω = e2πi/3 (draw a graph of Λ ⊂ C, highlighting the fundamental

parallelogram).

The constant γ2 = 2/
√
3 is the Hermite constant for d = 2, related to the hexagonal packing being the densest

circle packing in R2.

Proof: The proof relies on the conformal representation ϕ : Tflat → (T 2,G), where Tflat is a flat torus. Such a
representation is possible by the uniformisation theorem. Let f be the conformal factor so that

G = f2(du2
1 + du2

2),

where du2
1 + du2

2 is (locally) the flat metric for Tflat obtained earlier.

Let ℓ0 be any closed geodesic in Tflat, and ℓs the family of geodesics parallel to ℓ0. Parametrise ℓs by a circle of
length σ, such that

σ · ℓ0 = area(Tflat).

(For ℓ, we slightly abuse notation and mean both the geodesic and its length.)

Tflat → S1 is a Riemannian submersion. We have

area(T 2) =

∫
Tflat

f2 dA =

∫
S1

(∫
ℓs

f2 dt

)
ds,

where the last equality ‘separating’ the double integral follows from Fubini’s theorem from analysis.

By the Cauchy–Schwarz inequality,(∫
ℓs

f dt

)2

≤
∫
ℓs

1 dt

∫
ℓs

f2 dt = ℓ0

∫
ℓs

f2 dt.

Therefore, we have that

area(T 2) ≥ 1

ℓ0

∫
S1

(lenϕ(ℓs))
2 ds,

and so there must be an s0 ∈ S1 such that area(T 2) ≥ σ
ℓ0
(lenϕ(ℓs0))

2, so that lenϕ(ℓs0) ≤ ℓ0. We have thus re-
duced the proof to the flat case, which can easily be examined visually (draw the fundamental parallelogram

of Tflat = C/Z[ω] with area
√
3/2 and the circle arg z = π/3 on its surface, showing visually that

this achieves the minimum σ/ℓ0 = 1 attainable).

4 Other systolic results

There is also Pu’s inequality for a Riemann surface M homeomorphic to the real projective plane RP 2:

Thm. (Pu, 1950)

sysπ1(M)2 ≤ π

2
area(M).

Again, this bound is sharp.

The systolic ratio (SR) for RP 2 is thus π/2. SR is 2/
√
3 for the torus T 2 as proven above; π/23/2 for the

Klein bottle RP 2#RP 2 (Bavard, 1986); and (1 +
√
2)/3 = 0.8047... < SR ≤ 2/

√
3 for the surface of genus 2

(Katz–Sabourau, 2006). Conjecturally, the SR for surfaces of positive genus g is 2/
√
3; this is known to be true

for g ≥ 20 (Katz–Sabourau, 2005).

For higher dimensions, we have Gromov’s systolic inequality for the class of ’essential manifolds’:

Thm. (Gromov, 1983)
sysπ1(M)n ≤ Cn volM

Cn depends only on the dimension of the manifold M .

For the notion of a 2-systole, the infimum of areas of 2-cycles representing CP 1 ⊂ CPn = e0 ∪ e2 ∪ · · · ∪ e2n:

Thm. (Gromov, 1981)
stsysn2 ≥ n! vol(CPn).

Applications: There is a link to quantum error correcting codes which goes by the name of Z2-systolic freedom,
due to Freedman and Hastings (circa 2000). Fetaya (2011) provides a link to homological error correcting codes.
Unfortunately, whether qeccs and heccs are the same things or what said links even are, I’ve absolutely no clue.
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