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Introduction: a bird’s eye view

High-level view:

A sheaf is an object that tracks data (here, abelian groups) on open sets of a space and
provides a way to glue these data together globally. Exactness of sheaves induces long
exact sequences on sheaf cohomology. We show that de Rham cohomology, defined by
differential forms, agrees with singular cohomology over complex coefficients.

We then define divisors as formal sums of codimension 1 subvarieties (so for Riemann
surfaces, just points), and prove the Serre duality theorem for sheaves of divisors
inductively.

Finally, we culminate by proving the Riemann–Roch theorem, relating the complex
analysis of meromorphic functions as vector spaces on a Riemann surface and the
topology (genus) of said Riemann surface. A striking application is presented: part of
the proof of the elliptic curve group law.
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Sheaves

Def. A presheaf of abelian groups F on a topological space X , T is a collection of
abelian groups (F(U))U∈T along with group homomorphisms ρU

V : F(U) → F(V )
whenever U, V are open and V ⊂ U, such that ρU

W = ρV
W ◦ ρU

V and ρU
U = idU .

Here, we stipulate that each group F(U) is a group of functions on U, so ρU
V is the

restriction map f |V = ρU
V (f ).

Def. A sheaf of abelian groups is a presheaf such that

i) Given a collection of open sets (Ui)i∈I with U =
∪

i∈I Ui and an element fi in each
F(Ui), if fi |Ui∩Uj = fj |Ui∩Uj for all i , j ∈ I, then there exists f ∈ F(U) such that
f |Ui = fi for all i ∈ I.

ii) If f , g ∈ F(U) and f |Ui = g |Ui for all i ∈ I, then f = g .
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Sheaves

Examples. On a Riemann surface:

• O: (sheaf of) holomorphic functions

• Ω: holomorphic 1-forms

• C: locally constant functions with values in C

• E : differentiable functions — structure sheaf of a differentiable manifold

• E(1): differentiable 1-forms

• E1,0: differentiable 1-forms locally resembling f dz , i.e., having no dz term

• Z: closed 1-forms
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Sheaves

Stalks at points x ∈ X capture how much of the local-to-global structure of the sheaf
can be ‘seen’ from the point of view of x .

Def. The stalk of F at x is defined as Fx := lim−→F(U) taken over open sets U
containing x .

Suppose f ∈ F(U1), g ∈ F(U2), and [f , x ], [g , x ] are their corresponding elements in
the stalk Fx . If [f , x ] = [g , x ], then there exists a neighbourhood V ⊂ U1 ∩ U2 of x
such that f |V = g |V . (This follows from properties of direct limits.)
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Cohomology of sheaves

We start by defining sheaf cohomology relative to an open cover, then take the direct
limit over all possible open covers.

Def. Given an open cover U = (Ui)i∈I and a sheaf F , we define the zeroth cochain
group C0(U ,F) :=

∏
i F(Ui). C0 is a collection of local sections of the sheaf F . An

element of which is denoted (fi).

Def. For any n ∈ N, define the nth cochain group as

Cn(U ,F) :=
∏

(i0,··· ,in)∈In+1

F(Ui0 ∩ · · · ∩ Uin).

An n-cochain is then denoted (fi0,··· ,in), indexed by a multi-index.
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Cohomology of sheaves

It is natural to define the coboundary operator δ: an element of C0 maps to an
element of C1 by taking the difference of the restrictions of fi and fj to Ui ∩ Uj .

Def. δ : C0(U ,F) → C1(U ,F) is defined on each ‘coordinate’ by ∂(fi) = (gij), where
gij = fj |Ui∩Uj − fi |Ui∩Uj . Similarly, δ : C1(U ,F) → C2(U ,F) is defined by
δ(fij) = (gijk), gijk = fij |Uijk + fjk |Uijk + fki |Uijk , each restricted to Uijk := Ui ∩ Uj ∩ Uk .

Intuitively, δ measures the failure of a 0-cochain to paste together into a global section
of F . If δ(fi) = 0, then fi |Ui∩Uj = fj |Ui∩Uj , so by the first sheaf axiom the (fi) can be
‘pasted’ together into a function f ∈ F(X ). Such elements of C0 are called closed
cochains, and the group of closed cochains is denoted Z 0(U ,F) = ker δ0. Similarly,
Z 1 = ker δ1.

Define also the coboundary image set B1(U ,F) = im δ0. B0 := 0.
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Cohomology of sheaves

One can check that δ2 = 0. This makes the cochain groups a cochain complex:

C0(U ,F)
δ−→ C1(U ,F)

δ−→ C2(U ,F)
δ−→ · · ·

Def. The nth cohomology group is Hn(U ,F) := Zn(U ,F)/Bn(U ,F) = ker δi/ im δi−1.

Since B0 = 0, we have H0 = Z 0, the global sections of the sheaf F .
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Cohomology of sheaves

For two open covers B = (Bj)j∈J and U = (Ui)i∈I , B is finer than U , written B < U, if
every Bj is contained in some Ui = Uτ(j) (τ : J → I is just a mapping of indices).

This allows us to define maps τUB : Z 1(U ,F) → Z 1(B,F) and B1(U ,F) → B1(B,F),
which together induce τUB : H1(U ,F) → H1(B,F) on cohomology. We omit proofs of
the following facts: τUB does not depend on choice of τ above; and it is injective.

From these facts, we may define H1(X ,F) := lim−→H1(U ,F), the direct limit being
taken over all open covers U of X . We will usually just write H1(F).

0 → H0(F)
δ−→ H1(F)

δ−→ H2(F) → · · ·
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Exact sequences of sheaves

Def. A sheaf homomorphism α : F → G is a collection of homs αU : F(U) → G(U)
such that the maps commute with restriction maps ρ — for all open sets V ⊂ U:

F(U) G(U)

F(V ) G(V )

ρU
V

αU

ρU
V

αV

α induces homs of stalks Fx
αx−→ Gx . A hom of sheaves is mono if it is mono (injective)

on every stalk; and epi if epi (surjective) on every stalk. A sequence F α−→ G β−→ H is
exact if, for every x , Fx

αx−→ Gx
βx−→ Hx is exact.
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Exact sequences of sheaves

Lemma 1.1
If α : F → G is a sheaf monomorphism, then every αU : F(U) → G(U) is also a
monomorphism.

However, the same statement for sheaf epimorphisms fails to be true. Example:
O exp−−→ O×, where exp(f ) = e2πif . Locally (at stalks, i.e., neighbourhoods of points in
C×), we see that exp is indeed invertible. However, on general open sets U ⊂ C×

(including C× itself), exp is not invertible — the logarithm is multivalued, so in
particular id ∈ O×(C×) has no preimage under exp.

Not all hope is lost:
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Exact sequences of sheaves

Lemma 1.2
If 0 → F α−→ G β−→ H is an exact sequence of sheaves, then for any open set U,
0 → F(U)

αU−−→ G(U)
βU−→ H(U) is also exact.

This sets up for a remarkable fact:
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Exact sequences of sheaves

Lemma 1.3
If 0 → F α−→ G β−→ H → 0 is a short exact sequence of sheaves, then

0 → H0(F)
α−→ H0(G) β−→ H0(H)

δ∗−→ H1(F)
α−→ H1(G) β−→ H1(H) → · · ·

is a long exact sequence. δ∗ is called the connecting homomorphism.

From this, we can take relative cohomology, and compute H1(F) = H0(H)/β(H0(G)).
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De Rham cohomology

Def. For functions, df = fzdz + fzdz . Define ∂f := fzdz and ∂f := fzdz for
functions, extending to differential forms in the obvious way. Clearly d = ∂ + ∂.

Ep,q is mapped to Ep+1,q ⊕ Ep,q+1 by d ; to Ep+1,q by ∂; and to Ep,q+1 by ∂. A
function is holomorphic iff ∂f = 0 (Cauchy–Riemann).

Def. The nth de Rham cohomology group is Hn
dR(X ) := Hn−1(Z)/d(Hn−1(E)).

(Recall that Z and E are the sheaves of closed 1-forms and differentiable functions
respectively; also that C is the sheaf of locally constant complex-valued functions.)
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De Rham cohomology

Theorem 1.4 (De Rham)

Hn
dR(X ) ∼= Hn(C).

Proof: This follows from the exactness of the sequence

0 → C → E d−→ Z → 0,

which itself comes from local exactness at stalks and ultimately the Poincaré lemma.
This extends to a long exact sequence on cohomology.

There is also the Dolbeault theorem for Dolbeault cohomology in bidimension (p, q)
involving ∂.
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Divisors

In full generality, Serre duality for coherent sheaves is a statement involving the
dualising sheaf ωX on a (Cohen–Macaulay) scheme X :

Exti
X (F ,ωX ) ∼= Hn−i(X ,F)∗.

ωX corresponds to the canonical divisor K in the specific case of Riemann surfaces.
We will not concern ourselves with this vast generalisation and instead restrict
ourselves to the case of Riemann surfaces, i.e., 1-dimensional complex manifolds.

Def. A divisor on a compact Riemann surface X is a finite formal sum
∑

i cipi , where
ci ∈ Z and pi ∈ X . Denote the set of divisors on X by Div(X ).
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Divisors

The divisor of a (meromorphic) function f ∈ M(X ) is the divisor (f ) :=
∑

p ordp(f )p.
In the same way that ideals generated by a single element are called principal, a divisor
which is the divisor of a function is called principal; as a set, Prin(X ).

Cl(X ) := Div(X )/Prin(X ) is called the divisor class group of X . A divisor is effective if
ci ≥ 0 for all i . We can add/subtract divisors by adding/subtracting their formal sums.
Finally, we write D ≥ D′ if D − D′ is effective.

The degree of a divisor is the map deg : Div(X ) → Z;
∑

cipi 7→
∑

ci . Using a fact
from complex analysis: If D is principal, then degD = 0, since on a compact Riemann
surface, the orders of zeroes and poles sum to 0.
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Divisors

Given two meromorphic 1-forms ω1,ω2, choosing some coordinate chart Uz , we note
that their ratio ω1/ω2 = f1dz/f2dz = f1/f2. This latter quantity is invariant under
change of coordinate charts, so any two meromorphic 1-forms lie in the same divisor
class, which we shall represent with the canonical divisor KX = K .

Def. For a divisor D, define the sheaf OD by OD(U) := {f ∈ M(U) : (f ) ≥ −D}.
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Divisors

Some basic facts:

If D = 0, OD = O. If D ≤ D′, then OD(U) ⊂ OD′(U) for all open sets U.

Lemma 2.1
If D and D′ lie in the same divisor class, then OD ∼= OD′ .

Lemma 2.2
OD+K ∼= ΩD.
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Divisors

Def. The skyscraper sheaf Cp is defined by Cp(U) :=

{
C if p ∈ U
{0} if p /∈ U

.

The skyscraper sheaf will appear in a short exact sequence of sheaves, so it is helpful
to look at its cohomology:

Lemma 2.3
i) H0(X ,Cp) ∼= C;
ii) H1(X ,Cp) ∼= 0.
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Divisors

Proof: (i) Any open cover U of X can be refined so that only one Ui contains p. Then
H0(U ,Cp) ∼= Z 0(U ,Cp) ∼= C, and pass to the direct limit.

(ii) For any open cover U , we can again refine to an open cover where p is contained
in only one of the open sets. No intersection Ui ∩ Uj 3 p, so Z 1(U ,Cp) = {0}.
Refinement produces an injection, so Z 1 = {0} for all open covers; thus,
H1(U ,Cp) ∼= 0, and once again take the direct limit.
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Divisors

Finally, define β : OD+p → Cp like so. If f ∈ OD+p(U) and p ∈ U, pick a coordinate
chart (V , z) with V ⊂ U, z(V ) = D2, and z(p) = 0. Locally about p,
f (z) =

∑∞
n=−k−1 anzn, where D has value k and D + p has value k + 1 at p. Set

β(f ) = a−k−1. Otherwise, if p /∈ U, set β(f ) = 0.

0 → OD
i−→ OD+p

β−→ Cp → 0

is thus a short exact sequence of sheaves, inducing a long exact sequence on
cohomology:

0 → H0(OD)
i−→ H0(OD+p)

β−→ C δ∗−→ H1(OD)
i−→ H1(OD+p)

β−→ 0.
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Serre duality for Riemann surfaces

0 → H0(OD) → H0(OD+p) → C → H1(OD) → H1(OD+p) → 0

By Lemma 2.2, we can rewrite this as

0 → H0(ΩD−K ) → H0(ΩD−K+p) → C → H1(ΩD−K ) → H1(ΩD−K+p) → 0 (1)

Replacing D with K − D − p, we have

0 → H0(OK−D−p) → H0(OK−D) → C → H1(OK−D−p) → H1(OK−D) → 0,

and so the long exact sequence on the cohomology groups viewed as dual vector spaces:

0 → H1(OK−D)
∗ → H1(OK−D−p)

∗ → C → H0(OK−D)
∗ → H0(OK−D−p)

∗ → 0 (2)
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Serre duality for Riemann surfaces

Finally, we can combine (1) and (2) into the diagram

0 H0(ΩD−K ) H0(ΩD−K+p) C H1(ΩD−K ) H1(ΩD−K+p) 0

0 H1(OK−D)
∗ H1(OK−D−p)

∗ C H0(OK−D)
∗ H0(OK−D−p)

∗ 0

i i i i ,

where the i ’s are monomorphisms (proof omitted) arising from the functional Res from
complex integration.

Inductively, assume that H0(Ω−D′) ∼= H1(OD′)∗, where D′ := K − D. Then the
leftmost i is an isomorphism. By the five lemma, the left inner i is an isomorphism.
Similarly, the rightmost i is an isomorphism as well.
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Serre duality for Riemann surfaces

We have shown that H0(Ω−D′) ∼= H1(OD′)∗ implies H0(Ω−(D′+p)) ∼= H1(OD′+p)
∗; a

symmetric argument for −(D′ − p) and D′ − p concludes the inductive step.

Finally, Serre duality holds in the base case D′ = K − D = 0 — i.e., H0(Ω) = H1(O)∗

— by an argument involving Stokes’ theorem and an inner product of 1-forms (proof
omitted). Thus,
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Serre duality for Riemann surfaces

Theorem 2.4 (Serre duality)

H0(Ω−D) ∼= H1(OD)
∗.
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Genus

Def. The genus of a Riemann surface X is g = 1
2 dimH1(X ).

Since H1(X ) ∼= H1
dR(X ) ∼= H0(Ω)⊕ H0(Ω) and H0(Ω) ∼= H1(O), we have that

g =
1
2 dimH1(X ) = dimH0(Ω) = dimH1(O),

with the last equality following from the base case of Serre duality (a space and its
dual have equal dimension).

The dimension of the space of holomorphic 1-forms H0(Ω) is also known as the
geometric genus of X , so both definitions of genus agree.
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Riemann–Roch theorem

The proof of Riemann–Roch via sheaf cohomology takes the form of a similar inductive
argument.

Theorem 3.1 (Riemann–Roch, first version)
Let D be a divisor on a compact Riemann surface of genus g. Then

dimH0(OD)− dimH1(OD) = 1 − g + deg(D).
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Riemann–Roch theorem

Proof: Suppose D = 0. Then OD = O, H0(O) consists of constant functions so has
dimension 1, H1(O) = g by definition, and deg(D) = 0. Thus, the LHS and RHS
agree, being 1 − g .

Now suppose the identity holds for a divisor D. We have again the long exact sequence

0 → H0(OD) → H0(OD+p)
β−→ C δ∗−→ H1(OD) → H1(OD+p) → 0.

Separate this into two sequences, checking that they are short exact:

0 → H0(OD) → H0(OD+p)
β−→ imβ → 0

0 → C/ imβ
δ∗−→ H1(OD) → H1(OD+p) → 0
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Riemann–Roch theorem

We have dimH0(OD+p) = dimH0(OD) + dim im β and
dimH1(OD+p) = dimC/ imβ + dimH1(OD+p) from the first and second short exact
sequences, respectively.

Adding both equations up, we get

dimH0(OD+p) + dimH1(OD+p) = dimH0(OD) + dimH1(OD) + 1
= (1 − g + deg(D)) + 1
= 1 − g + deg(D + p).

Argue analogously for D − p. This completes our induction.
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Riemann–Roch theorem

Serre duality allows us to slightly reformulate Riemann–Roch in a way more amenable
to computations:

Theorem 3.2 (Riemann–Roch, second version)
Let D be a divisor on a compact Riemann surface of genus g. Then

dimH0(OD)− dimH0(OK−D) = 1 − g + deg(D).

This, of course, follows from Ω−D = OK−D and thus
dimH1(OD) = dimH1(OD)

∗ = dimH0(Ω−D) = dimH0(OK−D).
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Applications

For brevity, denote the dimension of the vector space of meromorphic functions f on X
with (f ) ≥ −D by ℓ(D). The second form of Riemann–Roch is thus simply

ℓ(D)− ℓ(K − D) = 1 − g + deg(D).

As an immediate consequence, we can calculate the degree of the canonical divisor K :

deg(K ) = dimH0(OK )− dimH0(OK−K ) + g − 1
= dimH0(Ω)− dimH0(O) + g − 1
= g − 1 + g − 1
= 2g − 2 = −χ(X ),

where χ is the Euler characteristic.
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= dimH0(Ω)− dimH0(O) + g − 1
= g − 1 + g − 1
= 2g − 2 = −χ(X ),

where χ is the Euler characteristic.
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The theorem also leads to the classification of Riemann surfaces by their possible
universal covers: the sphere S2, the complex plane C, or the Poincaré half-plane model
H (equivalently, the disk as a model of the hyperbolic plane).
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Applications

Def. An elliptic curve is the solution set E := {[x : y : z ] ∈ CP2 : E (x , y , z) = 0},
where E (x , y , z) = y2z − x3 − axz2 − bz3, a, b ∈ C, and 4a3 + 27b2 6= 0.

Stunningly, elliptic curves carry a group law: Given any two points on an elliptic curve,
a straight line through them is guaranteed to intersect the curve at a third point. The
reflection of this third point about the x -axis is the sum of the original two.

The proof of the group law depends on Riemann–Roch.
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Applications

The goal is to show that the always-injective Abel–Jacobi map
J : E → Cl(E );P 7→ (P)− (O) is also surjective, and hence E inherits the group
structure from Cl(E ) = Pic0(E ) (in this context, the divisor class group is exactly a
more general construction, the Picard group).

Let D ∈ Div(E ). By Riemann–Roch, ℓ(D + (O)) = 1, so if f ∈ H0(OD+(O)) is not
constant, we have (f ) = −D − (O) + (P) for some P. Since deg(D) = deg((f )) = 0,
deg((P)) = deg((O)) = 1, so P ∈ E and is sent to (P)− (O), in the same divisor class
as D.
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Thank you!

Jake Lai
MH4921 Algebraic Topology — Final Presentation 39 / 40



Preliminaries on sheaves Serre duality The Riemann–Roch theorem References

Bibliography

[1] John Halliday. “The Riemann–Roch theorem and Serre duality”. In: (2015).
[2] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
[3] Rick Miranda. Algebraic Curves and Riemann Surfaces. Google-Books-ID:

aN4bfzgHvvkC. American Mathematical Society, 1995. 414 pp. isbn:
978-0-8218-0268-7.

[4] Jerry Shurman. “The elliptic curve group law via the Riemann–Roch theorem”. In:
().

Jake Lai
MH4921 Algebraic Topology — Final Presentation 40 / 40


	Preliminaries on sheaves
	Serre duality
	The Riemann–Roch theorem
	References

